

Changing lives of ordinary people through human and social sciences

Technolog

LIFE ORIENTATION

Mathem

Highlights from TIMSS 2011: South Africa

Towards Equity and Excellence

TRENDS IN INTERNATIONAL MATHEMATICS AND SCIENCE STUDY (TIMSS 2011)

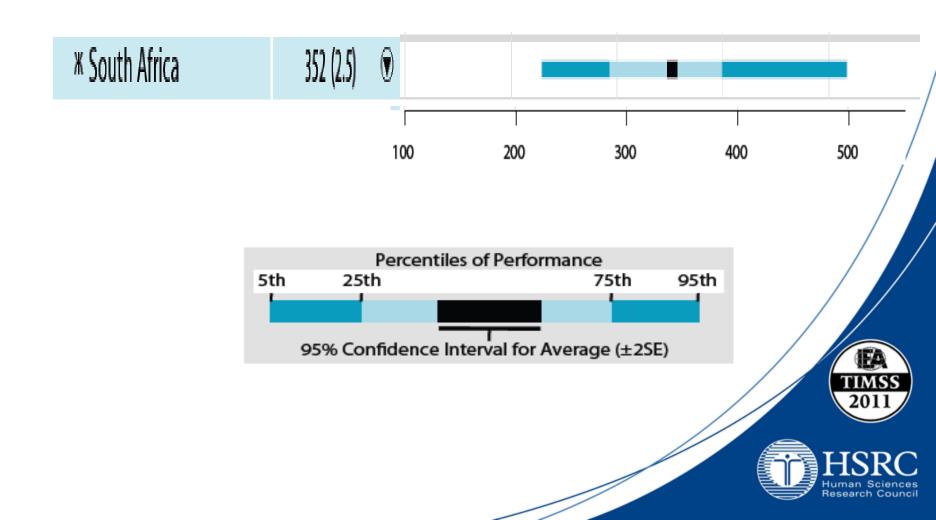
- TIMSS is an opportunity to assess and benchmark South African mathematics and science performance in an international study. TIMSS is conducted every four years since 1995. In TIMSS 2011, 45 countries participated at the grade 8/9 level.
- It is important to measure learner achievement through national, regional and international measures. These studies provide information about the well being of our educational system; so that we could better manage and improve our systems.
- In August 2011, the HSRC administered the TIMSS 2011 mathematics and science instruments in 285 schools to 11969 grade 9 learners.
- We had conducted previous TIMSS in 1995, 1999 and 2002 and have comparable data to monitor system-level trends in a global context.

Today's Presentation

- We present initial analysis from TIMSS 2011 data.
- We will report on:
- i. Methodology
- ii. TIMSS 2011 achievement; <u>Trends</u> in achievement since 1995, Comparison between TIMSS 2002 & 2011
- iii. Curriculum coverage
- iv. School & Home Resources
- v. Teacher & Classroom Resources
- vi. Language & achievement
- vii. Attitudes

Methodology

- All country participants had to follow very strict guidelines to ensure that samples were nationally representative.
- The general aims of the TIMSS 2011 sampling design is:
 - To ensure that the data provides accurate and efficient estimates of the South African grade nine school population;
 - To provide accurate measures of change in the student achievement from cycle to cycle.
- Hence TIMSS follows a 2-stage stratified cluster sampling design. With schools sampled at the first stage and intact classes as the second stage of sampling.
- Variables used for stratification were:
 - Province
 - Language offered by the school
 - School type (Public, Independent and Dinaledi)


Scaling of TIMSS achievement data

- TIMSS assessments cover a wide range of topics in mathematics and science.
- Hence a matrix-sampling booklet design is used where learners are only administered a subset of all the items in the matrix.
- In order to obtain learner scores on the entire assessment, Item Response Theory (IRT) scaling method is used to impute learner scores.
- TIMSS scaling approach uses plausible values to obtain proficiency scores in mathematics and science.
- To improve reliability of scores; IRT uses scores in conjunction with background information to impute scores.

Mathematics Score distribution explained

Mathematics Score distribution explained

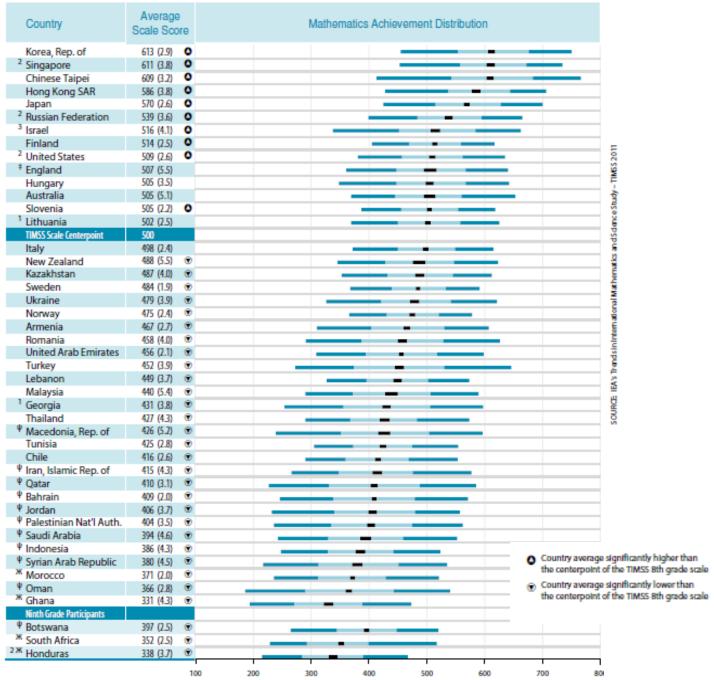
- The length of the distribution relates to variation.
- Important to note is that this variation should decrease/ become narrow over time (between TIMSS cycles).
- Black centre portion: Mean scores on the TIMSS achievement scale (with 95% confidence interval)
- The 5th percentile : 5% of the scores will be less than or equal to the score at that point of the range.
- The 95th percentile: 95% of the scores will be less than or equal to the score at that point of the range.
- The lighter shading on either side of the black area indicates the range of scores achieved by the middle 50% of the learners.

Trends: TIMSS 1995 to 2011

- The TIMSS achievement scale has a centre point of 500 and a standard deviation of 100 which were metrics established in 1995 (first cycle of TIMSS).
- It is scaled to remain constant so that comparisons can be between countries and across years.
- Data from the previous cycle and data from successive cycles are scaled using a process called concurrent calibration.
- Hence placing all data on the same scale for comparability.

Key messages from TIMSS 2011

- South African mathematics and science national average scores, although still low, has improved from 2002.
- The difference between the highest and lowest scores in 2002 to 2011 has decreased.
- The greatest improvements in scores is observed at the lowest end, from the lowest performing schools and provinces, and in schools formerly designated for Africans.
- The top end has not shown any major improvements and the former House of Assembly/ Model C and Independent schools perform at similar levels, but lower than the middle (Centrepoint) score.


1. Distribution of Mathematics and Science achievement in participating countries

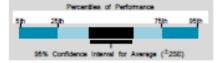
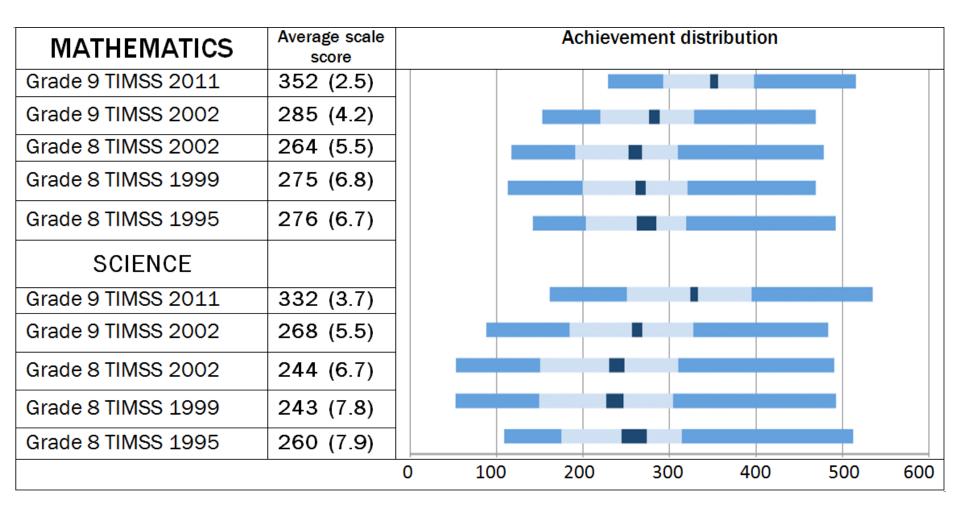
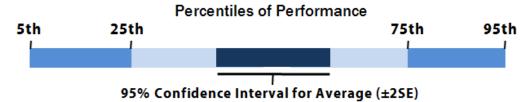


Exhibit 1.2: Distribution of Mathematics Achievement

- For mathematics, Asian countries Korea, Singapore, Chinese Taipei, Hong Kong and Japan - are top performers.
- South Africa, Botswana and Honduras conducted the study at Grade 9 level.
- South African performance is still at the low end, but has improved since 2002. In 2002 South Africa scored 285 points at the grade 9 level. In 2011 the score was 352.
- The top South African performers approached the average performance of the top performing countries.

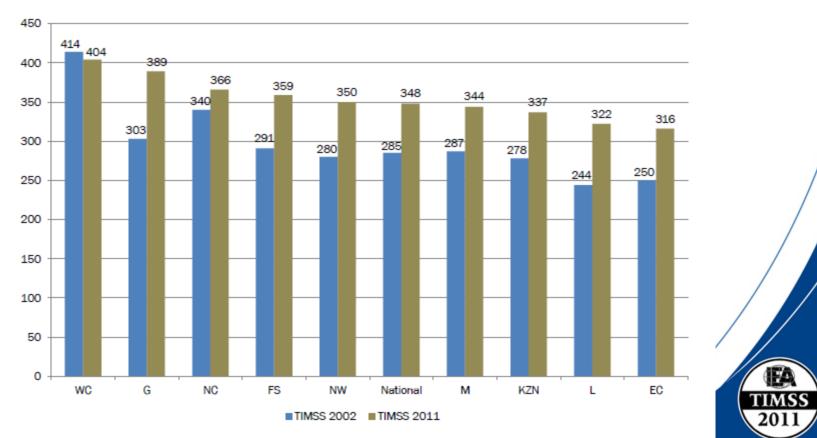




2. <u>Trends</u> in Mathematics and Science achievement in South Africa: 1995, 1999, 2002 and 2011.

Trends between TIMSS 1999 and TIMSS 2011

- For TIMSS 1995, 1999 and 2002, the average score remained the same perhaps due to the structural and educational changes in the country since 1994.
- Between TIMSS 2002 to 2011, there is an increase in achievement scores.
- Score distribution: the scores at the lower end increased.
- TIMSS estimates within a 4-year cycle a country could expect up to 40 point improvement —i.e. improve by one grade level.
- South African scores improved by around 60 points general improvement by 1.5 grade levels between 2002 and 2011.



3. Provinces: Achievement and Change in Achievement between 2002 to 2011.

Change in achievement by province between 2002 to 2011

Provincial performance

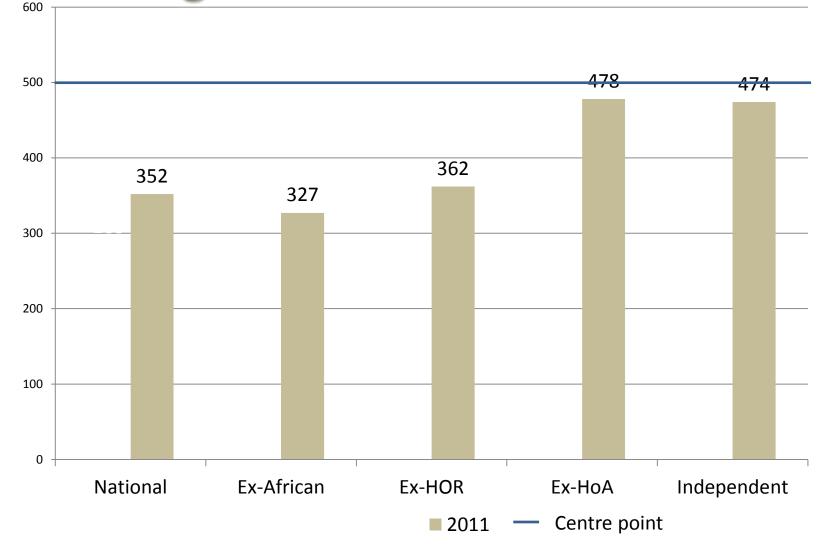
- All provinces, except Western Cape, increased the mathematics and science scores between 2002 and 2011.
- The changes in the Western Cape and Northern Cape scores is not statistically significant.
- The order of greatest improvement in mathematics scores are: Limpopo (1.33), Gauteng (1.31), Eastern Cape (1.27), NorthWest (1.26), Free State (1.24), KwaZuluNatal (1.23), Mpumalanga (1.2), Northern Cape (1.07), Western Cape (0.99).
- In 2002, the difference between highest and lowest performing province was 170 points. This decreases to 86 in 2011 – moving towards equitable outcomes.

4. School Type: Achievement and change in achievement

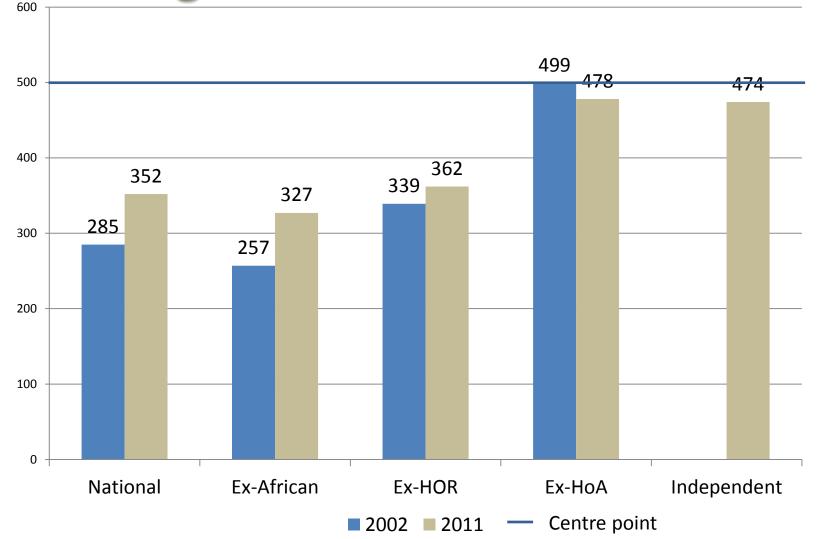
4.1.Public and Independent Schools

- In the study we oversampled the group of independent schools so that we could report on performance in public and independent schools.
- Independent schools scored higher than public schools.
 For mathematics:

Public schools: 348 points


Independent schools:

474 points



4.3. Former racial departments: Changes between 2002 to 2011

4.3. Former racial departments: Changes between 2002 to 2011

Performance by School Types

- The greatest improvement in average achievement scores, between 2002 and 2011, was in former African schools.
- The Independent Schools and former House of Assembly schools perform at similar levels.
- Former HoA, Quintile 5 and Independent schools achieve average scores below the Centrepoint/ middle score of 500.

5. Performance at International Benchmarks

Describe what learners know and can do.

Helps identify learners that can perform at high skills level

Performance at scores above 400: access to S&T careers and indicator of quality

	Advanced Benchmark (%) >625	High Benchmark (%) >550	Intermediate Benchmark (%) 475	Low Benchmark (%) >400	Less than 400 points
Gr 8 TIMSS 1995	0.3	2	6.6	13.6	87%
Gr 8 TIMSS 1999	0.2	1.5	5.7	13.2	86.8%
Gr 9 TIMSS 2002	0.6	1.5	2.8	10.5	89.5%
Gr 9 TIMSS 2011	1	3	9	24	76%

Performance at scores above 400: access to S&T careers and indicator of quality

	Advanced Benchmark (%) >625	High Benchmark (%) >550	Intermediate Benchmark (%) 475	Low Benchmark (%) >400	Less than 400 points
Gr 8 TIMSS 1995	0.3	2	6.6	13.6	87%
Gr 8 TIMSS 1999	0.2	1.5	5.7	13.2	86.8%
Gr 9 TIMSS 2002	0.6	1.5	2.8	10.5	89.5%
Gr 9 TIMSS 2011	1	3	9	24	76%
BOTSWANA	0	2	15	50	50%

6. Future.....?

- Participation in TIMSS 2015.
- Work towards improvement of both lower and top end of performance.
- With the effort and commitment of schools, teachers and learners and support from the educational departments we should set the target for an improvement by 30 points to reach a score of 382 in 2015 & 40% of learners score above 400 points.

Projected scores

YEAR	Grade 9 Mathematics scores
2023	442
2019	412
2015	382
2011	352
2002	285
1999	296 (extrapolated)
1995	294 (extrapolated)

CONTEXTUAL INFORMATION : Using Learner, Teacher, School & Curriculum Questionnaires

Provide insights into factors that are positively related to academic success.

SCHOOL & HOME RESOURCES

Literature

- Learners draw resources, both tangible and intangible, from school and home environments impact on learners' learning experience and performance
- Higher levels of resources are linked to better educational outcomes
- Learning is more difficult in learning environments where discipline, absenteeism, fear of injury or loss of personal property is a problem

Learning environment at school

- Three school safety and discipline indices (Principal, Teachers, Learners)
- School climate (resources, learner background, teacher working conditions)

Learning environment at home

- Home educational resources
- Learning resources at home

School environment

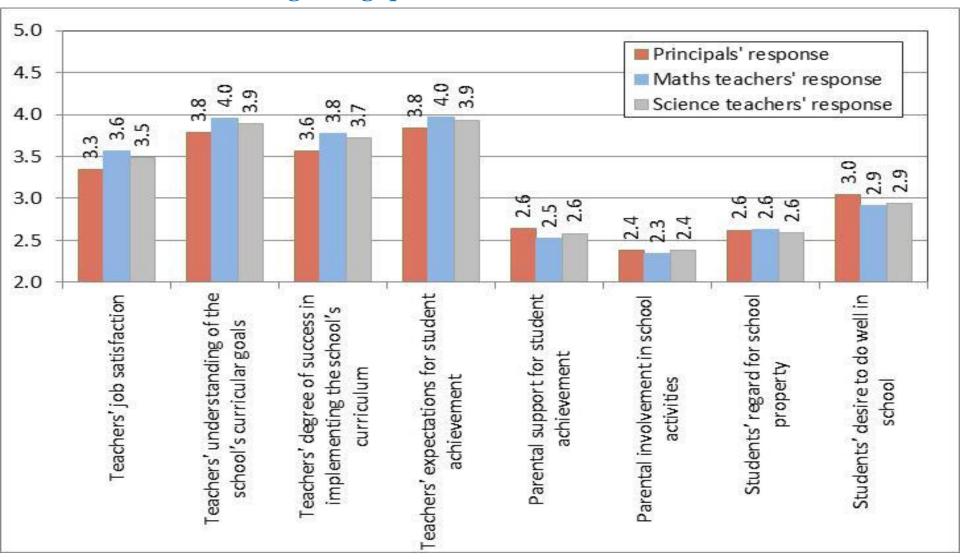
School discipline and safety index (Principals report)

- 4% of learners attended schools with hardly any problems 4 times less than the international figure of 16%
- 3% of public school learners and 34% of independent school learners attended schools with hardly any problems with discipline and safety
- In the EC, MP, NC, NW all learners attended schools with discipline and safety problems
- Data suggests a negative impact on performance: e.g. Math performance range in public schools is 31 points and in independent schools 82 points

Safe and orderly school index (Teachers report)

• Math teachers: 21%, Science teachers: 23% of the grade 9 learners attended safe and orderly schools

Students bullied at school index (Learners report)


- Three in every four learners (75%) experience bullying weekly/ monthly – the international figure is 41% of learners
- Learners in MP, LP, KZN worst off (more than 80% bullied)
- Data suggests that class size has a negative effect on bullying

SCHOOL CLIMATE

Comparison between principals', math and science teachers' responses regarding questions on school climate

Teachers' working conditions

Mathematics and science achievement scores by type of school and by teachers' report on working conditions

			ers taught by matics teachers	Learners taught by science teachers		
Type of school	Teacher working conditions index	Percent	Mathematics	Percent	Science	
		of	achievement	of	achievement	
		learners	score (SE.)	learners	score (SE.)	
Public	Hardly any problems	8	459 (21.7)	4	499 (16.2)	
	Minor problems	26	362 (7.1)	30	344 (9.7)	
	Moderate problems	66	330 (3.1)	66	306 (4.6)	
Indepen-	Hardly any problems	47	519 (22.4)	47	522 (19.8)	
dent	Minor problems	43	414 (24.5)	50	433 (27.4) /	
	Moderate problems	10	411 (31.6)	3	321 (10.8)	

Nationally, 9% of learners were taught by Math teachers who had hardly any problems with working conditions, while 5% of learners were taught by Science teachers who had hardly any problems with working conditions.

Resources in school

Percent of learners whose teachers use these resources to teaching math and science

	Textbooks		Workbo Works		Computer Software for mathematics and science instruction		
	As Basis for	As a	As Basis for	As a	As Basis for	As a	
	Instruction	Supplement	Instruction	Supplement	Instruction	Supplement	
Maths (SA)	71 (3.5)	27 (3.4)	43 (3.7)	51 (3.7)	5 (1.7)	19 (2.9)	
Maths (Int.)	77 (0.4)	21 (0.4)	34 (0.5)	62 (0.5)	7 (0.3)	55 (0.5)	
Science (SA)	66 (3.6)	28 (3.2)	39 (3.8)	52 (3.7)	3 (1)	17 (2.9)	
Science (Int.)	74 (0.4)	24 (0.4)	35 (0.5)	60 (0.5)	16 (0.4)	61 (0.5)	

Resources in school

Instruction affected by	Not A		
•	Percent	Average	D
resource shortages	of learners	Achievement	Range
Maths (SA)	5 (0.9)	510 (15.2)	160
Maths (Int.)	25 (0.5)	488 (2.2)	35
Science (SA)	5 (1.0)	499 (24)	166
Science (Int.)	22 (0.4)	494 (1.9)	30

Instruction - Limiting factors

Learners in classrooms where teachers report that instruction is limited by:

	A lack of prerequisite knowledge or skill		Lack of nutrition		Lack of sleep		Disruptive learners	
	Not At All		Not At All		Not At All		A Lot	
	% of learners	Avg Achieve- ment	% of learners	Avg Achieve- ment	% of learners	Avg Achieve- ment	% of learners	Avg Achieve- ment
Maths (SA)	7 (1.4)	365 (11.7)	37 (3.3)	379 (6.7)	41 (3.5)	350 (5.7)	21 (3.2)	342 (6)
Maths (Int.)	15 (0.4)	490 (1.9)	63 (0.5)	477 (0.8)	43 (0.6)	477 (1)	17 (0.4)	444 (1.8)
Science (SA)	9 (2.4)	340 (21)	38 (3.0)	351 (8.7)	31 (3.4)	330 (8.5)	22 (3.3)	338 (10.7)
Science (Int.)	20 (0.4)	496 (2)	64 (0.5)	485 (0.8)	42 (0.5)	484 (1)	17 (0.4)	462 (1.8)

Home educational resources

	Percent of learners with:				
Components of		Own Room and	At Least One Parent		
the Home Educational	More than 100	Internet	with a University		
Resources Scale	Books	Connection	Degree		
Resources scare	in their home	in Home	or Higher		
South Africa	9 (0.4)	25 (0.7)	19 (0.7)		
International Avg.	25 (0.2)	53 (0.2)	32 (0.2)		

Home educational resources

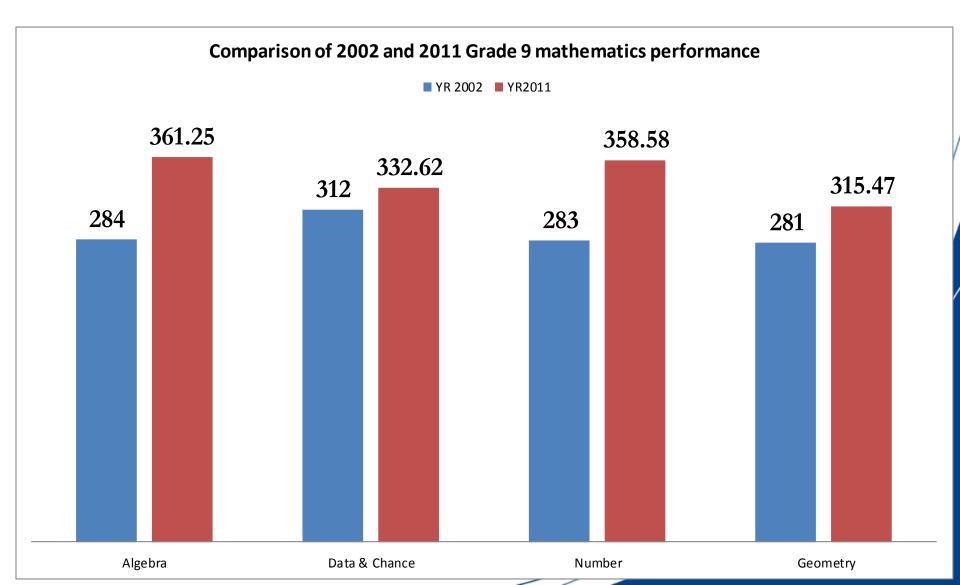
Home	Many F	Resources	Some F	Resources	Few Re	esources
educational	Percent	Average	Percent	Average	Percent	Average
resources	of learners	e	of	Achieveme	of	Achieveme
Index	oriearners	Achievement	learners	nt	learners	nt
Maths (SA)	3 (0.2)	487 (8.3)	55 (0.8)	362 (2.8)	42 (0.8)	333 (2.7)
Maths (Int.)	12 (0.1)	530 (1.2)	67 (0.2)	470 (0.6)	21 (0.2)	415 (1)
Science (SA)	3 (0.2)	504 (9.9)	55 (0.8)	347 (4)	42 (0.8)	305 (4.1)
Science (Int.)	12 (0.1)	540 (1.1)	67 (0.2)	480 (0.6)	21 (0.2)	424 (1)

Conclusion

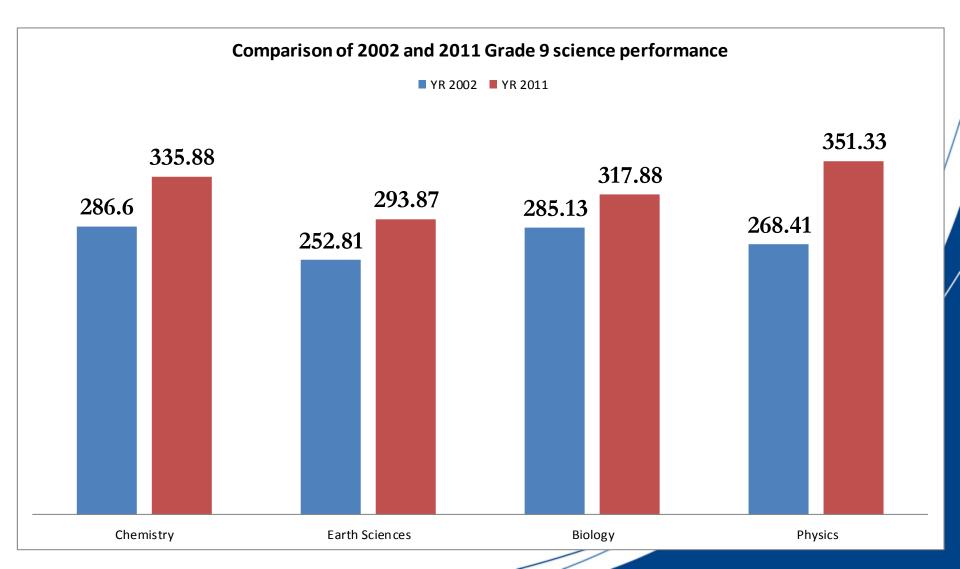
- Learners draw resources, both tangible and intangible, from school and home environments impact on learners' learning experience and performance
- Higher levels of resources are linked to better educational outcomes
- Learning is more difficult in learning environments where discipline, absenteeism, fear of injury or loss of personal property is a problem

Curriculum: Introduction

- Curriculum stability
- Performance increase
- International representative curriculum coverage
- Mathematics performance higher than the science performance

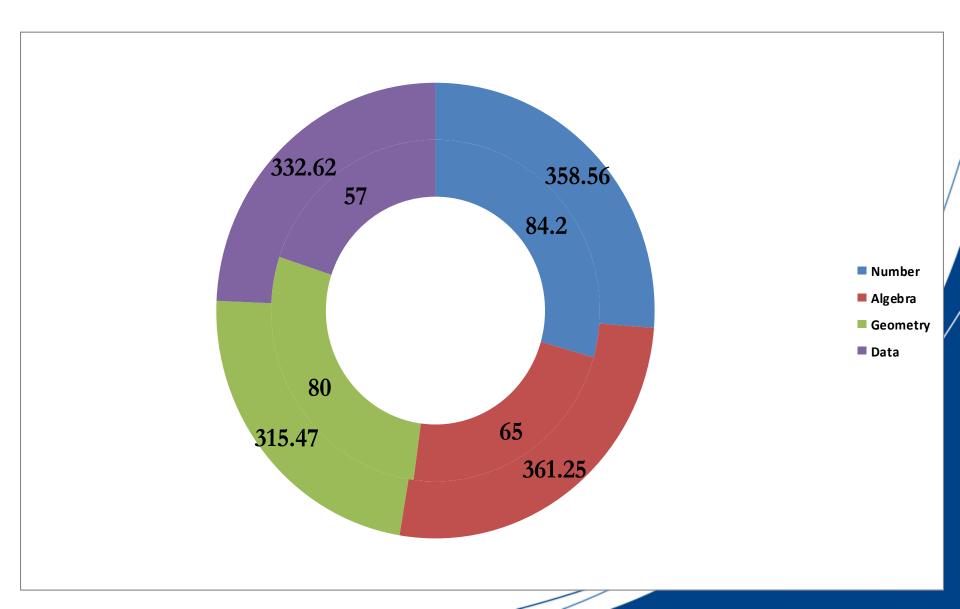


Changes in Curriculum landscape

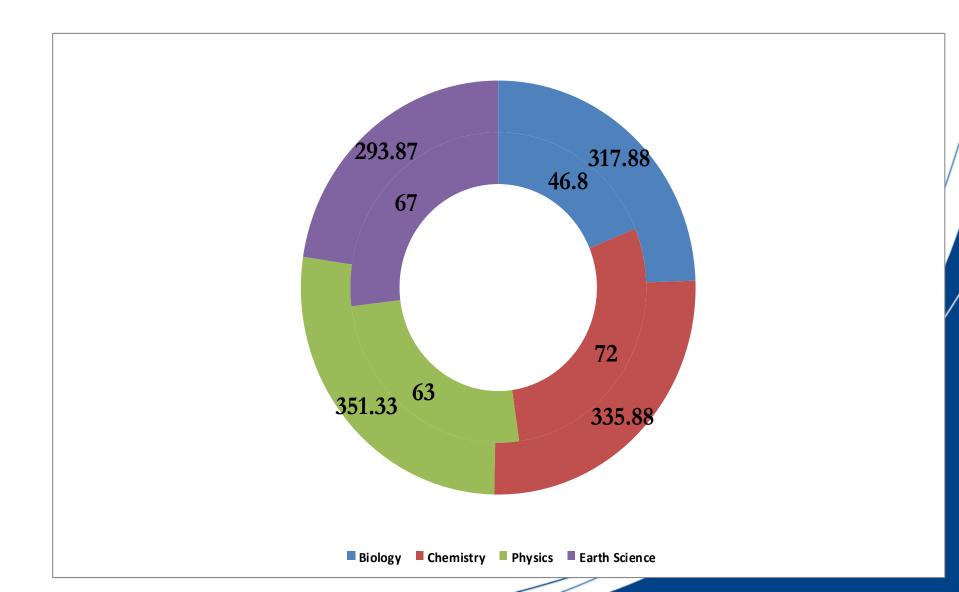

Curriculum	Years	Reasons	Duration
Interim syllabus	1995 - 1997	Changing from Apartheid system to the democratic system	2 years
Curriculum 2005	1998 – 2001	Skewed curriculum, lack of human resources for implementation, curriculum and assessment policy not aligned policy overload, no classroom transferability, inadequate teacher training, and inequitable quality of materials.	
Revised National Curriculum Statement	2002 - 2011	Lack of a plan for implementation, an overabundance of policies, guidelines and interpretations of policies and guidelines at all levels of the education system, and unclear role of subject advisor.	
Curriculum Assessment Policy Statement	2012		

Mathematics performance difference between 2002 and 2011

Science performance difference between 2002 and 2011


Curriculum coverage in percentages

	IEA TCMA intended	SA Intended	SA reported implemented
Mathematics	100	94	72
Science	100	90	62



Math topics coverage and performance

Science topics coverage and performance

Conclusion

- Improvement of mathematics and science performance in 2011
- Curriculum stability for the ten year period
- Curriculum implementation challenges continued
 In general mathematics coverage was higher than science coverage, this might have translated to the overall better mathematics performance. However, there is no direct relationship between performance and curriculum coverage.

TEACHERS

- Examines the context for TIMSS learners' learning
- Aim: describe variables that are most likely to have an impact on or be associated with achievement
- Indicative rather than representative of SA teachers
- Learner is the unit of analysis

- We will report on:
 - Gender, Age, Years of teaching, Academic preparation,
 Professional development, Preparedness to Teach, and their
 Confidence in Teaching and Career Satisfaction

KEY ISSUES

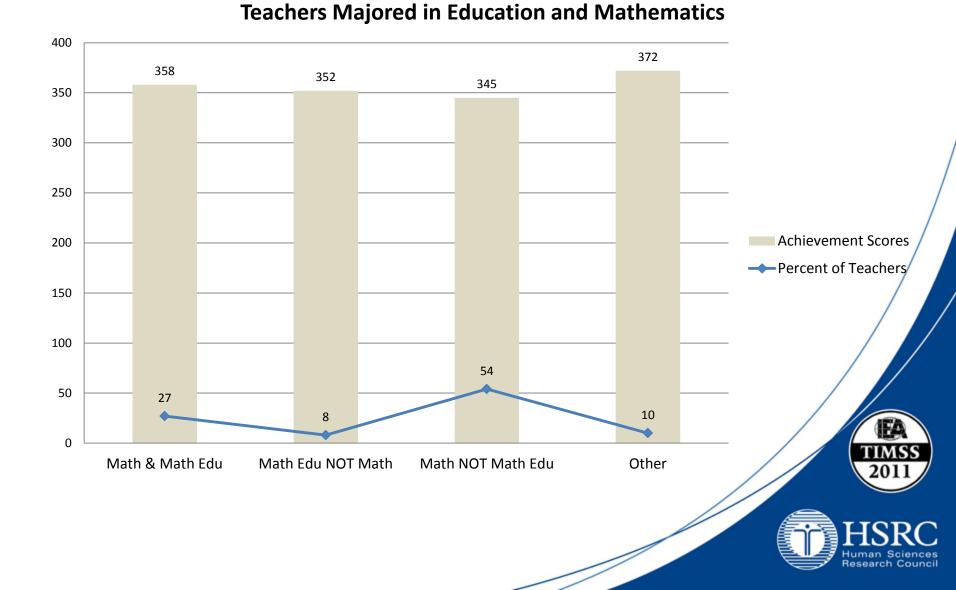
• Maturation of teaching force: experienced teachers – increased from 10 to 14 years overall teaching experience.

• Increase in percentage of teachers with post-matric and academic qualifications and a high percentage of teachers with subject specialisation in mathematics and science.

• Teachers are very confident in their preparedness to teach and confident in teaching mathematics and science.

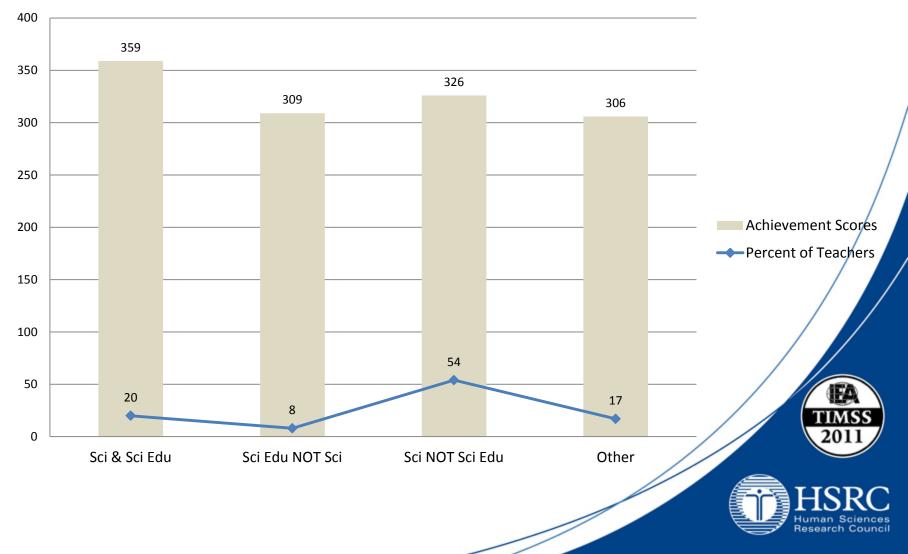
Percentage of Students by Teacher Characteristics		2011	Achievement Scores	2002	Achievement Scores
	Female	42 %	364	39%	276
Mathematics	Male	58%	337	61%	291
Science	Female	57%	330	43%	272
	Male	43%	318	57%	266
					HISRC Human Sciences Research Council

EXPERIENCE


	20 Years	or More	At least 10 less than			years but 10 years	Less thai	n 5 years	Ave: Years of
MATH	Students %	AA	Students %	AA	Students %	AA	Students %	AA	Experience
SA	30%	344	33%	358	18%	364	19%	345	14
Int.	36%	474	28%	470	19%	463	18%	458	16
SCIEN	CE								
SA	29%	346	31%	304	20%	341	20%	345	14
Int.	33%	480	29%	480	19%	475	20%	471	15

Academic Preparation

MATHEMATICS							
Percentage of Students by Their Teachers' Educational Level	SA 2011	2011 Achievement Scores	2011 Int.	SA 2002			
Finished Grade 12	2%	\sim	3%	5%			
Finished diploma	38%	338	11%	64%			
Finished first degree	43%	356	63%	23%			
Finished honours degree or higher	17%	353	24%	8 %			


SCIENCE							
Percentage of Students by Their Teachers' Educational Level	SA 2011	2011 Achievement Scores	2011 Int.	SA 2002			
Did not complete Grade 12	1%	~		1%			
Finished Grade 12	1%	~	2%	2%			
Finished diploma	46%	314	8%	61%			
Finished first degree	33%	326	63%	26%			
Finished honours degree or higher	20%	342	27%	10%			

Educational Emphasis on Mathematics

Educational Emphasis on Science

Teachers Majored in Education and Science

Teachers' Preparation to Teach

- Overall Mathematics (19 Topics): 88%; Int Avg: 84%
- Overall Science (20 Topics): 76%; Int Avg: 72%

Mathematics Topics	SA Avg. 2011	Int. Avg. 2011	Science Topics	SA Avg. 2011	Int. Avg. 2011
Numbers (5 Topics)	93%	92%	Biology (7 Topics)	84%	77%
Geometry (6 Topics)	85%	85%	Chemistry (4 Topics)	79%	82%
Algebra (5 Topics)	92%	87%	Physics (5 Topics)	76%	78%
Data and Chance (3 Topics)	80%	62%	Earth Science (4 Topics)	57%	47%

Confidence in Teaching and Career Satisfaction

	Very Co	nfident	Somewhat Confident		
Teachers Confidence in Teaching	Students %	Average Achievement	Students %	Average Achievement	
Math: SA Avg	89%	354	11%	336	
Math: Int. Avg.	76%	470	24%	456	
Sci: SA Avg	81%	332	19%	317	
Sci: Int. Avg	73%	479	27%	467	

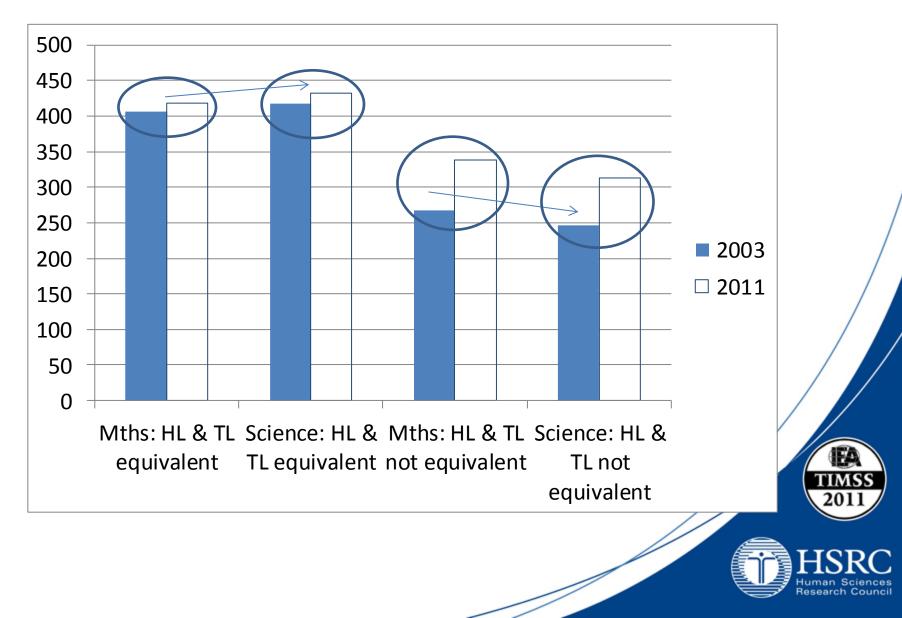
	Satisfied		Somewh	at Satisfied	Less Than Satisfied		
Teacher Career Satisfaction	Students %	Average Achievement	Students %	Average Achievement	Students %	Average Achievement	
Math: SA Avg	42%	351	48%	357	10%	332	
Math: Int. Avg.	47%	473	45%	464	7%	462	
Sci: SA Avg	38%	323	54%	331	8%	345	
Sci: Int. Avg	47%	481	45%	474	8%	473	

Conclusion

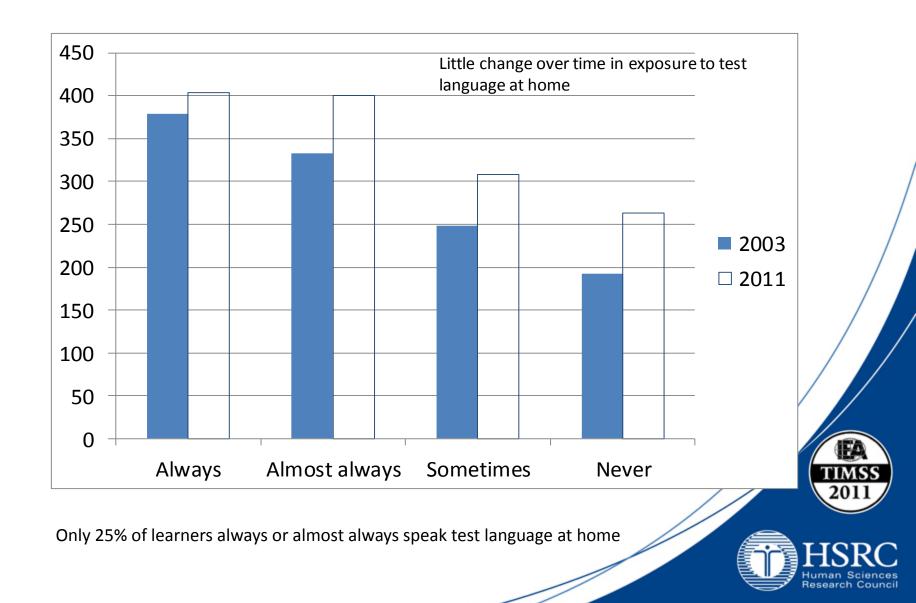
- South African TIMSS 2011 teachers are:
 - Older
 - Experienced
 - Well qualified
 - Well prepared
 - Confident
 - Satisfied
- Audit of teacher qualifications
 - National level, or
 - Representative sample

THE IMPORTANCE OF LANGUAGE

- Assumptions:
 - Learners move from "learning to read" to "reading to learn"
 - Text-rich, language-dependent background and activity enhance conceptual, cognitive and academic proficiency among learners
- TIMSS data allow for analysis of the association between learner achievement and contextual language factors/conditions closely related to writing, reading and speaking (within the three categories shown in the table to come)


Context and learner achievement

Factor affecting lo-hi score differences in the next column	For Maths
I. Demographic and structural conditions	
Home and instructional/test language equivalence	80
Perceived learner difficulty understanding spoken school lang.	65
Female & male parent/caregiver qualification level	85 & 90
II. Access to language opportunities and suppo	rt
Schools sending extra learning materials home	37
Exposure to writing through homework (frequency ; volume) (3+ times per week; 16-30 to 31-60 minutes in volume)	35 (teachers) 40 (learners)
Frequency of speaking the test language at home	84
Number of books at home	46
III. Resource constraints and limitations	
Effect of textbook/learning material shortages on instruction	107
Resources: - software use in class - computers, Internet, TV, dictionaries* at home	40 46 (39*)


... Language vulnerability of Science

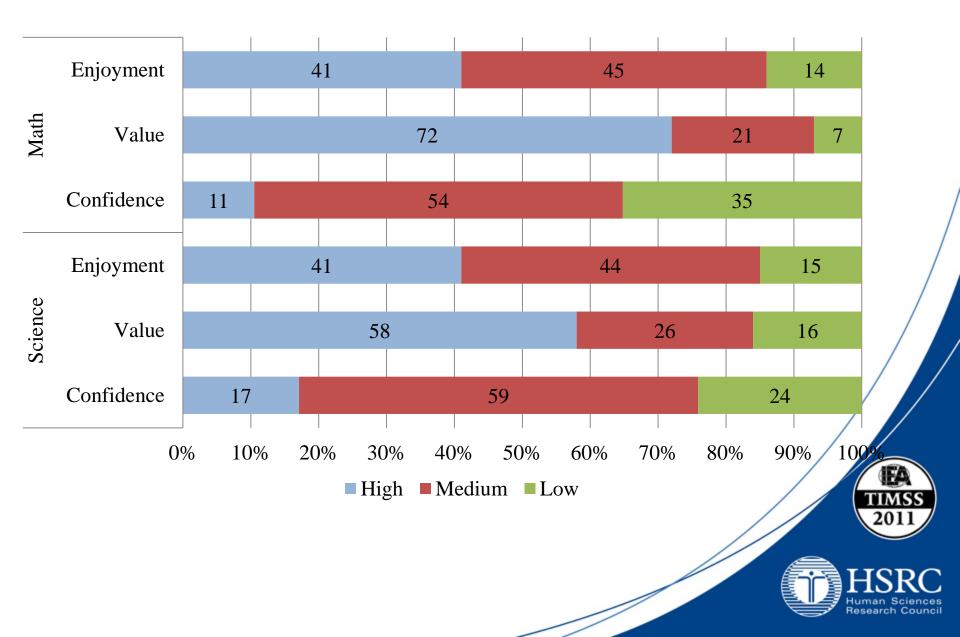
Factor affecting lo-hi score differences in the next column/ <u>s</u>	Maths	<u>Science</u>	
I. Demographic and structural conditions			
Home and instructional/test language equivalence	80	<u>120</u>	
Perceived learner difficulty understanding spoken school lang.	65	65	
Female & male parent/caregiver qualification level	85 & 90	<u>118 & 122</u>	
II. Access to language opportunities and support			
Schools sending extra learning materials home	37	45	
Exposure to writing through homework (frequency ; volume) (3+ times per week; 16-30 to 31-60 minutes in volume)	35 (teachers) 40 (learners)	Erratic	
Frequency of speaking the test language at home	84	<u>141</u>	
Number of books at home	46	61	
III. Resource constraints and limitations			
Effect of textbook/learning material shortages on instruction	107	<u>135</u>	
Resources: - software use in class - computers, Internet, TV#, dictionaries* at home	40 46 (39*)	57 66 (<u>76#</u>)	

Home / test language equivalence

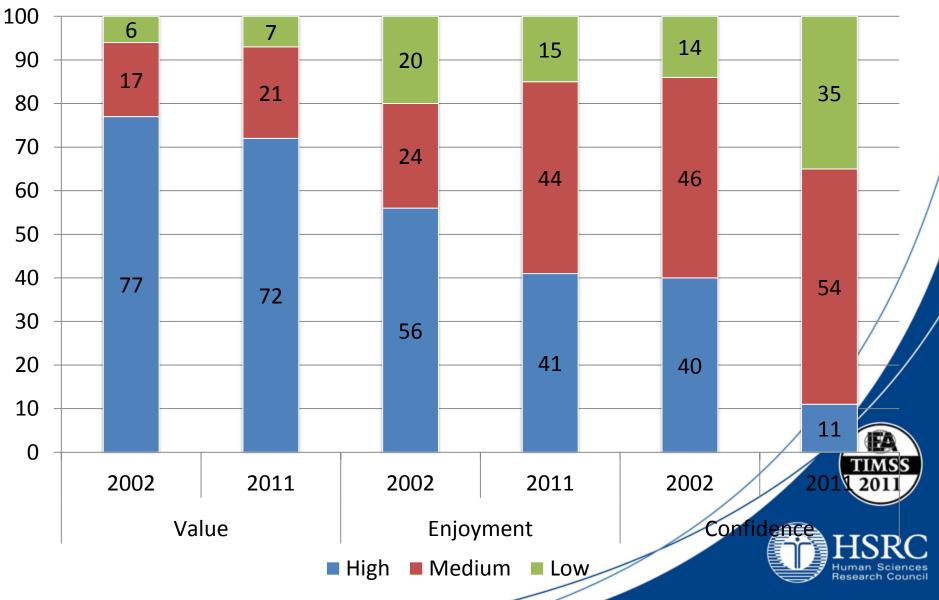
Science and speaking Test Lang. at home

Synthesis and implications

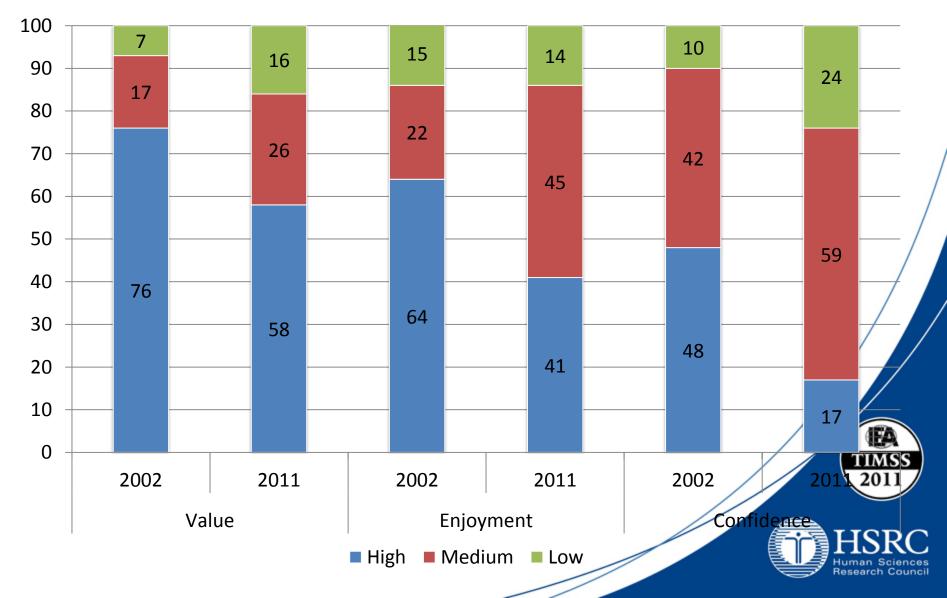
- Many language-linked learning conditions have improved
- The school system has to ensure that as many as possible learners' home and test languages are the same; else learners' proficiency in the language of learning and teaching (testing) should be increased
- The latter will benefit from greater exposure of learners to reading and writing of extended text, and to speaking the language of instruction at home, especially with a view to increasingly language-dependent contents/subjects
- Strong efforts are required to overcome constraints associated with language-based resources

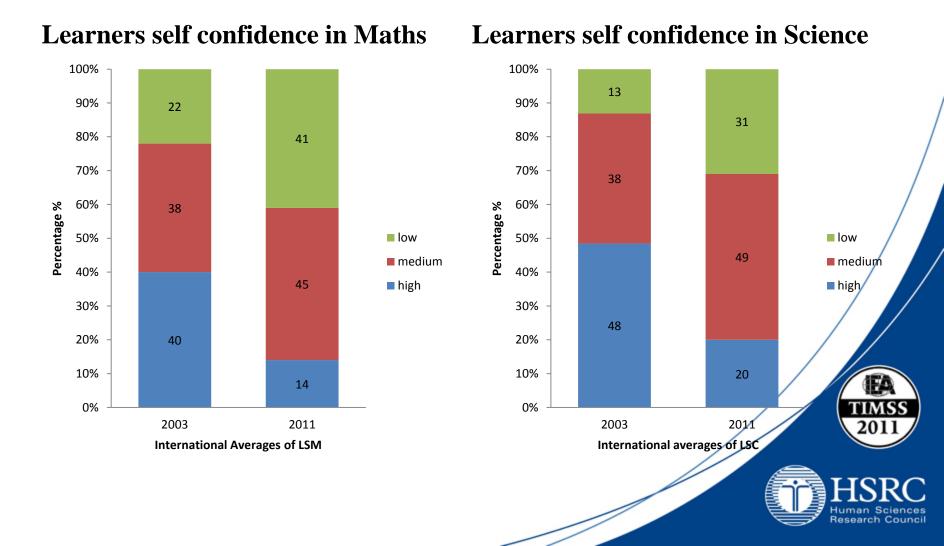


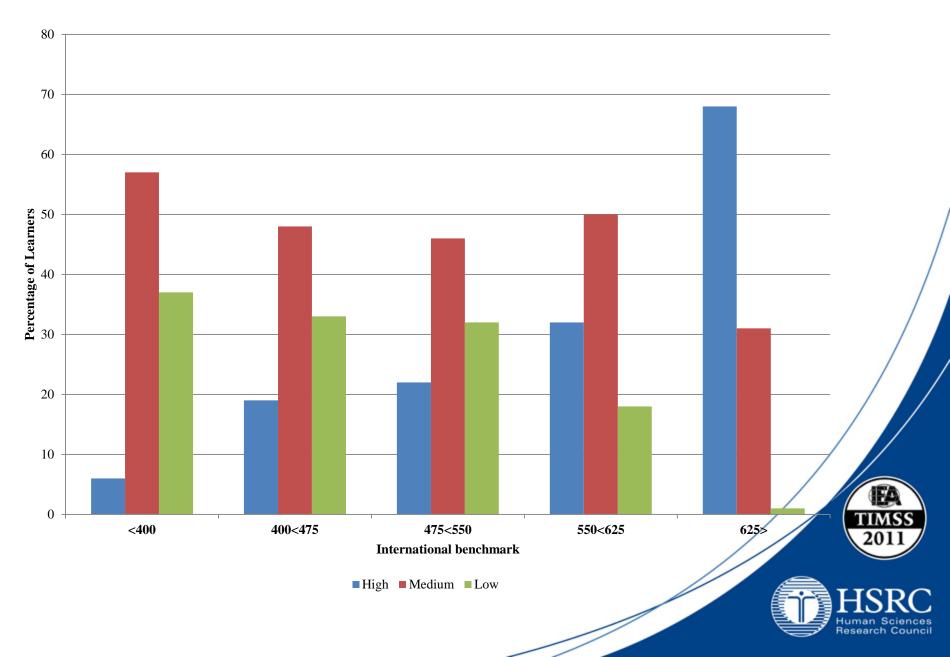
LEARNER ATTITUDES AND BELIEFS


Items used to measure each attitudinal theme

Attitudinal theme	Items used	
Enjoyment of mathematics and science	• I enjoy learning mathematics/ science	
Valuing Mathematics and Science	 I would like to take more Mathematics/Science in school I think leaning mathematics/ science would help me in my daily life I need mathematics/ science to learn other subjects I need to do well in mathematics/ science to get into the university of my choice I would like a job that involved using mathematics/ science I need to well in mathematics/science to get the job that I want 	
Confidence in Mathematics and Science	I usually do well in mathematics/ science Mathematics/ science is more difficult for me than for many of my classmates Mathematics/ science is not one of my strengths I learn things quickly in mathematics/ science	


Enjoyment, Value and Confidence in Mathematics and Science 2011


Trends in Mathematics [2002 to 2011]


Trends in Science [2002 to 2011]

Decrease of Self-confidence as an international phenomenon

Learners' self-confidence in mathematics by international benchmarks 2011

- Learners' attitudes towards mathematics and science were found to be moderate to high
- Learners self-confidence in learning mathematics and science had a dramatic decrease.
- School type and school location were found to have slight impact on attitudes towards the learning areas.
- Boys were found to have significantly higher positive expressions of value of science and confidence in learning mathematics, while girls expressed higher value of mathematics.
- Only the learners with moderate levels of confidence showed mixed patterns in relation to achievement

