Measuring HIV Incidence

Epidemiological methods Laboratory- based method

Prof Thomas Rehle Human Sciences Research Council

HIV Incidence Consultation Meeting August 2, 2007

Critical Questions

Are the observed changes in HIV trends:

- 1. a reflection of the natural history of the epidemic?
- 2. a product of changes in behavior?
- 3. a product of interventions?

Relationship between incidence, prevalence, and mortality

Source: FHI Evaluation Handbook 2001

Factors influencing reproductive rate of HIV transmission

Epidemiological methods

Longitudinal cohort studies

• HIV prevalence in youngest age group

Mathematical modeling

Antenatal HIV prevalence trends among 15-24 year olds, South Africa, 2000 - 2006

Methods for calculating incidence from age cohort prevalence in 15 to 24 year olds

- Calculate age cohort prevalence estimates
- Smooth prevalence curve for all age cohorts (15-24 years)
- 4. Calculate difference in prevalence from year to year using smoothed prevalence data
- 5. Assuming a steady state of HIV transmission from year to year and no AIDS-related mortality

Calculating incidence from single year age cohort prevalence in 15 to 24 year olds

Numerator:

% difference in prevalence from year to year

Denominator: Population at risk = 1-percentage of smoothed HIV prevalence in the previous year

HIV prevalence estimates by single year of age in 15-24 year old age cohort Antenatal Survey, South Africa 2004

Calculation of age cohort incidence among antenatal attendees, South Africa 2005

Age (years)	Smooth Prevalence (%)	Difference in prevalence (%)	Proportion population at risk	Incidence (%)
15	9.1			
16	10.6	1.438	0.909 (90.9%)	1.6
17	13.2	2.632	0.894 (89.4%)	2.9
18	16.7	3.473	0.868 (86.8%)	4.0
19	20.6	3.961	0.833 (83.3%)	4.8
20	24.7	4.098	0.794 (79.4%)	5.2
21	28.6	3.883	0.753 (75.3%)	5.2
22	31.9	3.315	0.714 (71.4%)	4.6
23	34.3	2.394	0.681 (68.1%)	3.5
24	36.4	2.076	0.657 (65.7%)	3.2

Laboratory- based methods

 direct incidence measure from cross-sectional surveys

HIV-1 BED incidence EIA (adapted from B. Parekh et al. 2002)

Schematic of the BED-CEIA

ITERS FOR

Comparison of Conventional EIA (antigen coated plates) and BED-Capture EIA

BED window periods at 0.8 cutoff

Subtypes

OVERALL

Country Window (95% CI)

AD B C C E

Kenya Amsterdam Thailand **Zimbabwe** Ethiopia Thailand 171 (150-199) 127 (113-152) 143 (118-170) **181 (165-198)** 167 (154-180) 115 (106-125)

155 (146-165)

Calibration of window period

Zimbabwe Cohort / subtype C

Window Period Estimates: Incidence

Validation Studies

- Cohort studies (seronegative at onset; no long term prevalent)
- Cohort studies including accumulated long-term infected
- Eligibility prescreens for enrollment in cohort studies (large number long-term prevalent)
- Cross-sectional surveillance surveys

BED incidence adjustments

• UNAIDS 2005: overestimates in cross-sectional studies

- BED validation meeting, CDC 2006:
 - Sensitivity/Specificity Adjustment (McDougal et al.)
 - Specificity Adjustment (Hargrove et al.)
 - Validated for HIV-1 subtypes B and C
 - (2 532 specimens from 1 192 individuals)

Imputed values for adjusted BED HIV incidence calculation

w = window in days (180)(mean duration of seropositivity in those testing recent)

Sensitivity/Specificity Adjustment (McDougal et al.)

 α = sensitivity of BED test for detecting recent (< w) infection (0.7682) β = specificity of the BED test over the period > w to < 2w (0.7231) γ = specificity of the BED test over the period > 2 w (0.9443)

 ε = false recent rate in those with long term (> 2 w) infection (0.0557)

NOTE: $\varepsilon = (1 - \gamma)$ and $\gamma = (1 - \varepsilon)$

Laboratory-based adjustment: Sequential testing algorithm

BED HIV-1 Incidence Estimates National HIV survey, South Africa 2005

- **BED HIV incidence CEIA applied to confirmed HIV**positive specimens
- **BED CEIA performed at NICD, Johannesburg**
- **BED HIV incidence estimates based on weighted** analysis

BED HIV incidence calculation

 $I = \frac{F (365/w) N_{inc}}{N_{neg} + F (365/w) N_{inc}/2} X 100$

(McDougal) $(R/P) + \gamma - 1$ $(R/P) (\alpha - \beta + 2\gamma - 1)$

Window period = 180 days

Incidence = number of new infections per year per 100 persons at risk (% / year)

HIV incidence % and number of new infections by age group, South Africa 2005

Age group (years)	Weighted sample (n)	HIV incidence % per year [95%CI]	Estimated number of new infections per year (n)
≥ 2	44 513 000	1.4 [1.0 - 1.8]	571 000
2-14	13 253 000	0.5 [0.0 - 1.2]	69 000
15-24	9 616 000	2.2 [1.3 - 3.1]	192 000
15-49	24 572 000	2.4 [1.7 – 3.2]	500 000

HIV prevalence and HIV incidence by age and sex, South Africa 2005

Are the adjusted BED HIV incidence estimates plausible?

ASSA model

BED HIV incidence vs ASSA model (estimates for 2005)

BED HIV incidence vs ASSA model: male and female youth 15-24 years

HIV prevalence in youth by single year of age HSRC 2005

HIV incidence and behaviour HSRC 2005 (age group 15 – 49 years)

Variable	HIV incidence (% per year)
Marital status	
Single	3.0
Married	1.3
Widowed	5.8
Sexual history	
Sexually active in the past 12 months	2.4
Current pregnancy	5.2
Condom use at last sex (15-24 yrs)	
Yes	2.9
Νο	6.1

Conclusion

- Incidence estimates enable a more timely analysis of the current HIV-transmission dynamics
- The adjusted BED HIV incidence estimates provide valid national HIV incidence estimates for South Africa
- Prevention campaigns did not have the desired impact, particularly among young women