The Quality Learning Project Review of Methodology and Factors Associated with Improvements in Schooling (QLP) Evaluation:

Presentation at ESSD Internal Seminar (11 May 2006)

CH Prinsloo

Research Programme: Education, Science and Skills Development

TO ATS THE COLUMN TO THE COLUM 7 28 24

Objectives / Outline of Presentation

- QLP evaluation design and methodology
- Central evaluation findings
- particular approach and analyses Lessons learnt from / about the QLP's
- implications, conclusions and recommendations

OVOZVO

Participants

- Business Trust R139 million; 5 years
- JET Education Services intervention programme managers
- Service providers 10 NGOs across different areas and provinces
- Education system 9 provinces, 17 districts, 524 schools (DoE co-concept.)
- HSRC independent evaluation (70 experimental & 16 control schools)

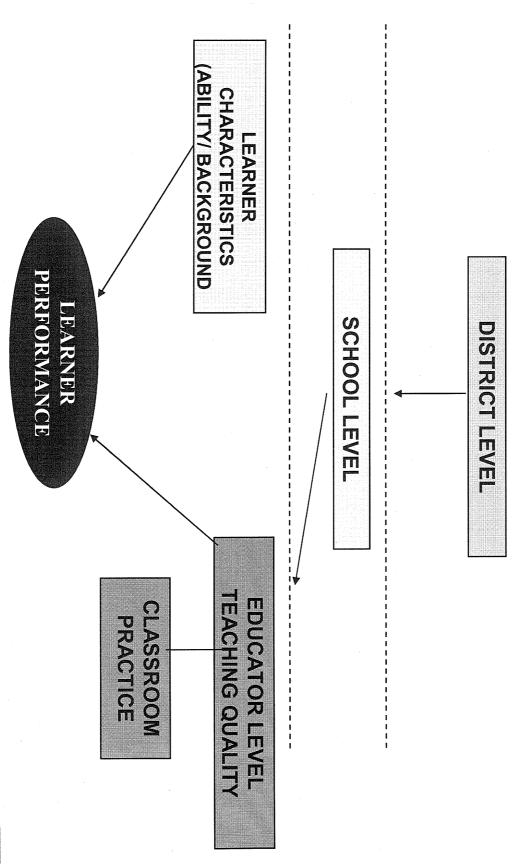
Key Outcomes / Targets

- "Each provincial cohort of the QLP schools would, by performance measured by ...: the end of 2004, show an improvement in school
- a 10% improvement in mean overall matric pass rate;
- a 10% improvement in mean mathematics pass rate;
- a 10% improvement in mean English Second Language pass rate,
- against a comparable sample drawn for the province." (Cited from original JET/QLP working documents.)

Extended Indicators

Because improvement in (matric) pass rates is limited to being an efficiency indicator, two more were

- Improved quantity increase in absolute number of matric passes; and
- Improved quality increase in number of matric passes) exemptions and HG maths passes (instead of SG



Subsidiary questions

- How did practice change (improve) at the district, to the mid-term (2002) and summative (2004) points? school and classroom level, from the baseline (2000)
- How did learner performance change in same period?
- How were levels of practice, and changes to these, related to learner performance?
- What was the intervention dosage (coverage) over the duration of the programme at the three levels?
- Which changes in learner performance and system practice could be attributed to interventions? ESSD

QLP Theoretical Model

Outcomes for the QLP model

DISTRICT LEVEL

More effective OD, planning and management

More effective HR management

More effective financial management

More effective school monitoring

More effective support to schools

SCHOOL LEVEL

More effective school development planning

Improved school governance

More effective HR management

More effective curriculum management

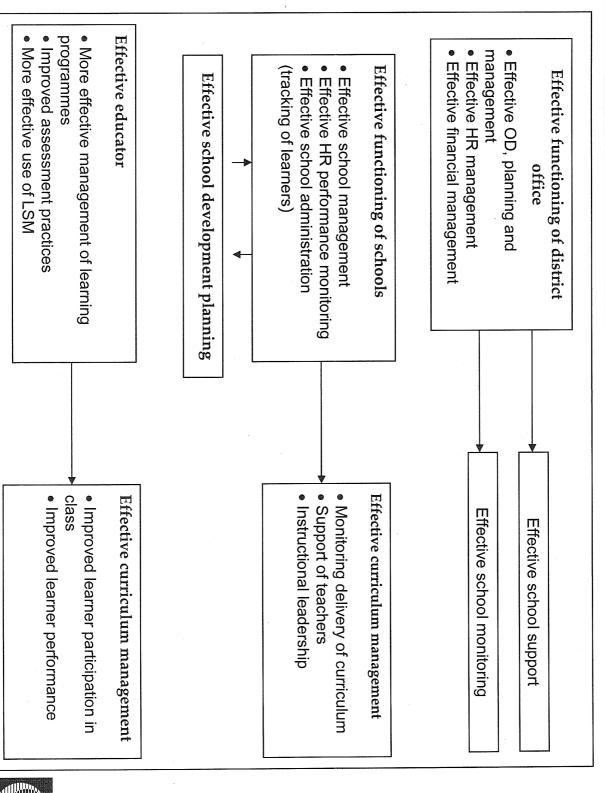
More effective school administration

EDUCATOR LEVEL

More effective management and delivery of learning

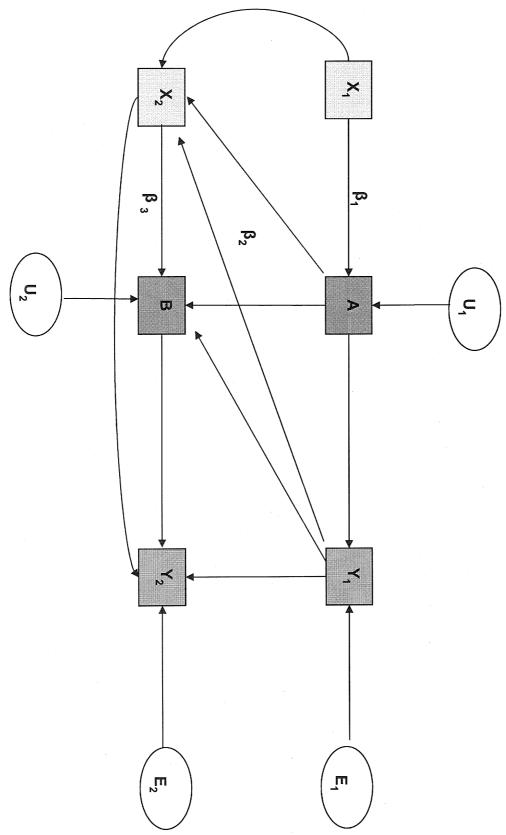
Improved assessment practices

More effective use of LSMs


Improved learner participation

LEARNER LEVEL

Improved learner scores



The QLP Model at the District, School and Educator Level

Path model applied

ESSD

Indicators and variables used

Six clusters of information:

- Cluster 1 (X₁) Interventions mid-2001 to end 2002 (district, school, maths teachers, language teachers as var.s)
- Cluster 2 (A) Initial functionality level at end 2002 (district, school, classroom) – latter = x 2 subjects x 2 gr.s)
- Cluster 3 (Y_1) Learner <u>performance</u> at end 2002 (Maths Gr 9, Maths Gr 11, R&W Gr 9, R&W Gr 11)
- Cluster 4 (X_2) Interventions since 2003 to mid-2004 (district, school, maths teachers, language teachers as var.s)
- Cluster 5 (B) Eventual <u>functionality</u> level end 2004 (district, school, classroom) – latter = x 2 subjects x 2 gr.s)
- Cluster 6 (Y_2) Learner <u>performance</u> at end 2004 (Maths Gr 9, Maths Gr 11, R&W Gr 9, R&W Gr 11)

Copy of Path Model jetstream (AMOS)

UU Centra evaluation

Most salient analysis challenges

- Effect of instrument changes midway, to reflect new causal model, on continuity
- School level is lowest for which cases different samples in subsequent years) remain consistent (learner data cover
- Rather small sample does not allow inclusion of many variables
- indices limited to overall levels of functionality, intervention and performance

[I] Success of QLP

As comparison between QLP and control schools from 2000 to 2004:

- Quantity of output
- Increase of QLP matric pass numbers was 16,84 %-points more in QLP than in control schools
- Increase of QLP English 2nd language HG pass numbers was 36,03 %-points more in QLP
- Efficiency of output
- Increase in overall school matric pass rate was 8,20 %-points more in QLP than in control ESSD

Success of QLP (continued)

Quality of output

- Increase of QLP number of learners passing with more in QLP than in control schools endorsement (exemptions) was 61,79 %-points
- Increase of QLP number of learners passing maths at HG was 924,19 %-points more in QLP *
- Increase of QLP number of learners passing maths at SG was 0,70 %-points more in QLP **

* Very low QLP baseline of 6 up with 55; control's 133 down with 10 ** QLP schools were discouraged to have this number grow

[II] Trends in Gr. 9 & 11 functioning

- above control (hypotheses/explanation?) skills increased significantly for QLP Learner performance – only Gr 11 writing
- Classrooms -
- Gr 11 favoured above 9, and
- Maths above language (LSM, curriculum planning, and coverage)
- For Gr 9 maths, QLP increase > control
- Steady general improvement in practices over of LSMs; classwork and homework practices) time (curriculum coverage; lesson pedagogy; use

Gr 9 & 11 trends (continued)

- School level (QLP increase > control for)
- School development planning
- Existence and use of resources, facilities, LSMs
- Curriculum leadership
- Financial and other school management
- School administration

District leve -

- Design and use of job descriptions
- Financial management
- Within-district planning
- School-support planning, implementation ESSD

[III] Causal modelling ('02 > '04)

Consistency over time / critical mass

Of interventions, functioning and learner performance (across levels, subjects and grades)

Interventions targeted / tailored

Dynamically and interactively to need

Interventions improved functioning

- Classroom and teacher interventions > school functioning
- District interventions > school functioning ESSD

Causal modelling (continued)

Functioning improved Irnr performance

School and teacher/classroom functioning in many cases

Interventions improved Irnr performance

- District interventions > Gr 11 Maths perform.
- Lang teacher interventions > matric pass rates

Dosage and quality of interventions

- Fatigue effects over time (difficult to sustain)
- District and Gr 9 language-teacher interventions were exceptions ESSD

the path-analysis diagrams from the Summative Report

Passrates -- Gr 12 overall

.555	.580	* * *	Matric passrate in 2004	5c	Matric passrate in 2004
.211	.297	.002	Lang Tchr Intrv 2003/4	<u>7</u> i	Matric passrate in 2004
078	325	.003	Distr Funct 2002	1 8	Lang11 Tchr Funct 2004
.598	.277	.016	Schl Funct 2002	4iii	Lang11 Tchr Funct 2004
.062	.321	.005	Lang Tchr Intrv 2003/4	4e	Lang11 Tchr Funct 2004
.460	.388	* * *	Distr Funct 2002	Ъ	Distr Funct 2004
.350	.368	* * *	Distr Intry 2003/4	4 c	Distr Funct 2004
.081	.187	.068	Lang11 Tchr Funct 2002	4ii	Schl Funct 2004
.217	.214	.040	Schl Funct 2002	4i	Schl Funct 2004
.027	.222	.028	Matric passrate in 2002	4b	Schl Funct 2004
.038	.415	.009	Lang Tchr Intrv 2003/4	4a	Schl Funct 2004
.640	.665	* *	Lang Tchr Intrv 2001/2	သွ	Lang Tchr Intrv 2003/4
.221	.341	.001	Lang Tchr Intrv 2001/2	3f	Schl Intry 2003/4
.219	.304	.007	Schl Intrv 2001/2	3e	Schl Intrv 2003/4
.300	.270	.009	Distr Intry 2001/2	3d	Schl Intrv 2003/4
399	370	* * *	Schl Intrv 2001/2	3c	Distr Intrv 2003/4
.754	.454	* * *	Distr Intry 2001/2	3b	Distr Intrv 2003/4
1.181	.332	.005	Lang11 Tchr Funct 2002	2b	Matric passrate in 2002
092	411	* * *	Schl Intry 2001/2	16	Lang11 Tchr Funct 2002
.252	.324	.005	Lang Tchr Intrv 2001/2	la	Distr Funct 2002
Unstandardised*	Standardised	T	Predictor	个	Predicted
Regression coefficient	Regressio		Variables (highlighted \leftarrow already reported in Sect 7.2.3, Tab 7.11)	ılready	Variables (highlighted $\leftarrow i$

analyses

Advantages of Path Analysis

- Enabled rather complex (involved) and sophisticated investigations
- Scientific-technical approach gives confidence in findings
- Logic/causal programme intervention models are clear and well integrated model and path-analysis evaluation
- Does/did not technically require a influencing outcomes (of functioning & control group for determining factors performance)

Advantages of Structural Equation Modelling*

- As powerful alternative to regression, and in contrast to it, it copes with:
- Correlated explanatory variables (and thus the problem of multi-collinearity)
- Measurement error
- Non-normal data
- Incomplete data
- Endogeneity
- Allowing a more complex and nuanced view of the world

* (Megan Louw, Dept Economics, Univ of Stellenbosch)

Disadvantages of Path Analysis

- Limited to school level as unit of analysis consistent over time
- This reduced the number of observations
- Which imited the number of variables that could be accommodated
- Which required substantive aggregation of indices and indicators
- Reduced statistical power of technique
- Implied "wasting" lots of data
- Requires huge data-management skill / VO T

Disadvantages of SEM *

- which variables affect one another analyst may find it difficult to determine all the ways in Because of the complexity of the methodology, the
- Including more relationships and variables comes at a does the co-variance structure it implies cost: As the system becomes more complicated, so
- Though SEM copes with non-linearities to some still explaining the variance-covariance matrix extent, it remains linear i.t.o. the linear regressions
- It needs a large dataset
- Model fit to the data does not logically imply that the model provides the correct / true(est) view of the world another model may fit the data equally well
- Lack of ability to generalise the results

recommendations

Implications

- The information on offer in the data has not nearly been exhausted at all
- Lots more analysis can be done and are required
- Other techniques and levels of analysis have to be explored
- Sophistication results in time lapse and gap between releasing the findings and initial impetus, interest & interventions loss of interest by client/DoE

Conclusions

- Policy-maker dilemma (reference to evidenceof Dr Philip Davies and Prof Michael Noble) ** based policy making; as presented in the work
- Research & M&E, on the one hand, and the on the other, do not meet pace of implementation and policy horisons,
- Importance of sharing data and techniques, secondary analyses, etc. in this context

** Research for government: research evidence (a) evidence a experience, expertise & judgement political ideology; external, systematic research

Recommendations

- The need for / value of a working group practically argued widely and implemented including that of the QLP, has to be to interrogate the potential of data,
- The work of such a team could easily be linked to post-graduate students and internship arrangements
- Secure the interest of and contributions by funders to sustain this

Recommendations (continued)

- Subject each specific investigation to guidance of expert teams / work-groups statistics, methodologies, etc. under the multi-angle approaches in terms of
- Determine and prioritise the next most important analyses required
- Focus on those factors hindering and enhancing the quality of schooling
- Design true tracer / longitudinal studies, with the learner level as unit of analysis.

