IDENHEHCAHION OF GUNHENHICKENS HEN MODEL WHy HNCOMLPLEHE DAHA ON A POPUHAHION

M. Ngungu ${ }^{1}$, MY. Shatalov ${ }^{2}$, CR. Kikawa ${ }^{3}$

Tshwane University of Technology
${ }^{1}$ Merciend@yahoo.com
${ }^{2}$ Shatalovm@tut.ac.za
${ }^{3}$ Richard.kikawa@gmail.com

Department of Mathematics and Statistics

BIOMATH 2017

OUTLINE

$>$ Introduction
$>$ Objectives
>The Gumel-Mickens Model
$>$ Solution of the problem \& numerical results
$>$ Conclusions and applications
$>$ References

INTRODUCTION

> Challenges/problems of incomplete information or unavailable data in modelling of disease dynamics
$>$ Previously, (Fedotov \& Shatalov, 2007) problems on estimation of dynamic system parameters from experimental data in linear systems with respect to their unknown coefficients have been discussed

This talk presents a method of identifying mathematical models that can be used to model HIV/AIDs transmission dynamics in the presence of incomplete data.

INTRODUCTION-CONT

HIV/AIDS population statistics by end 2015

HIV/AIDS related challenges

> Affects health of a population,
consequently, impacts development and social economic growth of households, communities and nations at large.
$>$ Owing to these statistics there is a need to study, design, analyse and solve mathematical models for determining indicators that could give insight into eradicating HIV/AIDs.

OBJECTIVES

$>$ In "On identification of dynamical system parameters from experimental data" the authors, (Mathye, Fedotov and Shatalov, 2004) the Gumel-Mickens HIV transmission model was considered with the aim of estimating the unknown parameters and restoring the information
$>$ Analogous, with different parameters and coefficients unknown;
$>$ Fully identify the Gumel-Mickens HIV transmission model,
$>$ find all coefficients of this mathematical model and
> restore information on
$>$ HIV- susceptible population
$>$ and uninfected-vaccinated population
$>$ Ultimately, with the key objective of giving insights in eradicating HIV from the community.

THE GUMEL-MICKENS MODEL

HIV transmission model that monitors the dynamics of HIV in four sexually active populations in the presence of

 vaccines as described by Gumel Moghadas and Mickens$$
D(T)=\left\{\begin{array}{l}
\dot{X}=P_{1}-\mu_{1} X-\alpha_{v} \frac{X Y_{V}}{N}-\alpha_{w} \frac{X\left(Y_{W}+Y_{W V}\right)}{N} \\
\dot{Y}_{V}=P_{2}-\mu_{2} Y_{V}+\alpha_{v} \frac{X Y_{V}}{N}-\gamma \frac{Y_{V}\left(Y_{W}+Y_{W V}\right)}{N} \\
\dot{Y}_{W}=\quad-\mu_{3} Y_{W}+\alpha_{w} \frac{X\left(Y_{W}+Y_{W V}\right)}{N} \\
\dot{Y}_{W V}=\quad-\mu_{4} Y_{V W}+\gamma \frac{Y_{V}\left(Y_{W}+Y_{W V}\right)}{N}
\end{array}\right\}
$$

With $t>t_{0}$ and initial conditions:

$$
\begin{array}{ll}
X\left(t_{0}\right)=X_{0}, & Y_{W}\left(t_{0}\right)=Y_{W 0} \\
Y_{V}\left(t_{0}\right)=Y_{V 0}, & Y_{W}\left(t_{0}\right)=Y_{W 0}
\end{array}
$$

Parameter	Interpretation
$X(t)$	Population susceptible to HIV
$Y_{V}(t)$	Individuals uninfected by wild type and vaccinated population
$Y_{W}(t)$	Individuals infected by wild type and unvaccinated population
$Y_{W V}(t)$	Individuals infected by wild type and vaccinated population
$Z=Y_{W}(t)+Y_{W V}(t)$	Infected by wild type and vaccinated population
$Z Z=X(t)+Y_{V}(t)$	Healthy population
$N(t)=X(t)+Y_{V}(t)+Y_{W}(t)+Y_{W V}(t)$	Total (sexually active) population
P	Recruitment rate of susceptible population
$\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}$	Natural cessation of sexual activity
α_{w} and α_{v}	Rate of transmission of virus and vaccine, respectively
γ	Degree of protection against virus

THE GUMEL-MICKENS MODEL-CONT...

$$
N=X+Y_{V}+Y_{W}+Y_{W V}
$$

P. Mathye : $\quad N, X, Y_{V} \quad$ - are known

$$
\mathrm{Z}=Y_{W}+Y_{W V}=N-X-Y_{V} \text { - also known }
$$

But: $Y_{W}=Y_{W}(\mathrm{t})$ and $Y_{W V}=Y_{W V}(\mathrm{t}) \quad$ are not known

In this case: $\quad N, Y_{W}, Y_{W V} \quad$ - are known

$$
\mathrm{ZZ}=N-\left(Y_{W}+Y_{W V}\right)=X+Y_{V}-\text { also known }
$$

But: $X=X(\mathrm{t})$ and $Y_{V}=Y_{V}(\mathrm{t}) \quad$ - are not known
and coefficients are unknown

THE GUMEL-MICKENS MODEL-CONT...

Assumptions:

$>$ all dependent variables of G-M model and parameters are non-negative,
all new individuals recruited into the society (either via birth or immigration) at a rate P per year are considered to be susceptible analogous to Gumel et al.,
$>$ population is reduced by the natural cessation of sexual activity at a constant rate l, and by infection with the virus which may be acquired from each new sexual partner at a rate α_{w}.

SOLUTION OF PROBLEM

> Stage 1:

> Use direct method of initial problem solving
$>$ assume that all parameters and initial conditions of the four populations are known as below and solve the system numerically using Computer Algebra System (CAS)

```
pi := 2000
p:=0.8 c
\betav}:=0.
\betaw}:=0.4
\psi := 0.6
\mu}:=0.03
d1 := 0.3
d2 := 0.25
d3 := 0.2
```

Recalculation of the parameters into new parameters

$\mathrm{p} 1:=(1-\mathrm{p}) \cdot \mathrm{pi}$	$\mu 1:=\mu$	$\mu 2:=\mu+\mathrm{d} 1$	$\mu 3:=\mu+\mathrm{d} 2$	$\mu 4:=\mu+\mathrm{d} 3$
$\mathrm{p} 2:=\mathrm{p} \cdot \mathrm{pi}$	$\mathrm{\alpha v}:=\mathrm{c} \cdot \beta \mathrm{v}$	$\mathrm{ow}:=\mathrm{c} \cdot \beta \mathrm{w}$	$g_{\mathrm{m}}:=(1-\psi) \cdot \mathrm{ow}$	(g for gamma)

SOLUTION OF PROBLEM-CONT...

$>$ System of ODE with known parameters
Right hand side of the Cauchy system $\left(u_{0}=X, u_{1}=Y_{v} u_{2}=Y_{w} u_{0}=Y_{v w}\right)$:

Initial conditions are also taken from the abovementioned paper:

$$
u:=\left(\begin{array}{llll}
80 \cdot 10^{3} & 2 \cdot 10^{3} & \mathrm{~s} \cdot 10^{3} & \mathrm{~s} \cdot 10^{3}
\end{array}\right)^{\mathrm{T}}
$$

SOLUTION OF PROBLEM-CONT...

Time interval (\mathbf{T}) is different (shorter than in the previously cited paper). $\mathbf{N N}$ is number of interval onto given time interval.
$T_{1}=5 \quad \mathrm{NN}:=25 \quad \mathrm{i}:=0 . \mathrm{NN}$
Solution of system of equation by the specific method:
$\mathrm{U}:=\operatorname{Adams}(\mathrm{u}, 0, \mathrm{~T}, \mathrm{NN}, \mathrm{D})$

$$
\mathrm{TOL}=1 \times 10^{-3}
$$

Time interval (T) is different (shorter than in the previously cited paper). NN is number of interval onto given time interval.
$T:=5 \quad \mathrm{NN}:=25 \quad \mathrm{i}:=0 . . \mathrm{NN}$
Solution of system of equation by the specific method:
$\mathrm{U}:=\operatorname{Adams}(\mathrm{u}, 0, \mathrm{~T}, \mathrm{NN}, \mathrm{D})$

$$
\mathrm{TOL}=1 \times 10^{-3}
$$

SOLUTION OF PROBLEM-CONT...

Stage 2:

$>$ Forget the values of the parameter and assume that we know only $N-$ total population and Y_{W} - population infected, $Y_{W V}(t)$-population infected-vaccinated
$>$ It is also known that the sum $N-Y_{W}-Y_{W V}=N-Z=X+Y_{V}$, that is the sum of healthy population

$$
\begin{array}{lll}
N_{i}:=\left(U^{\langle 1\rangle}\right)_{i}+\left(U^{\langle 2\rangle}\right)_{i}+\left(U^{\langle 3\rangle}\right)_{i}+\left(U^{\langle 4\rangle}\right)_{i} & z_{i}:=\left(U^{\langle 3\rangle}\right)_{i}+\left(U^{\langle 4\rangle}\right)_{i} & U^{\langle 1\rangle}=\mathrm{X} \\
z Z_{i}:=N_{i}-z_{i} & Y W:=U^{\langle 3\rangle} & \text { YvW }=U^{\langle 4\rangle}
\end{array}
$$

Interpolation and subsequent differentiation using CAS

VYw $:=\operatorname{cspline}\left[\left(\mathrm{U}^{\langle 0\rangle}\right), \mathrm{U}^{\langle 3\rangle}\right]$
$Y w(t):=\operatorname{interp}\left(V Y w, U^{\langle 0\rangle}, U^{\langle 3\rangle}, t\right)$

$$
\begin{aligned}
& \text { VYvw }:=\operatorname{cspline}\left(U^{\langle 0\rangle}, U^{\langle 4\rangle}\right) \\
& \operatorname{Yvw}(t):=\operatorname{interp}\left(v Y v w, U^{\langle 0\rangle}, U^{\langle 4\rangle}, t\right)
\end{aligned}
$$

NUMERICAL RESULTS

$>$ Numerical solutions

$\mathrm{N}=$		0	$\mathrm{YW}=$		0	$\mathrm{YVW}=$		0
	0	$9.8 \cdot 10^{4}$		0	$8 \cdot 10^{3}$		0	$8 \cdot 10^{3}$
	1	$9.679 \cdot 10^{4}$		1	$1.397 \cdot 10^{4}$		1	$7.725 \cdot 10^{3}$
	2	$9.52 \cdot 10^{4}$		2	$2.086 \cdot 10^{4}$		2	$7.544 \cdot 10^{3}$
	3	$9.32 \cdot 10^{4}$		3	$2.823 \cdot 10^{4}$		3	$7.493 \cdot 10^{3}$
	4	$9.078 \cdot 10^{4}$		4	$3.541 \cdot 10^{4}$		4	$7.601 \cdot 10^{3}$
	5	$8.798 \cdot 10^{4}$		5	$4.17 \cdot 10^{4}$		5	$7.869 \cdot 10^{3}$
	6	$8.489 \cdot 10^{4}$		6	$4.655 \cdot 10^{4}$		6	$8.269 \cdot 10^{3}$
	7	$8.159 \cdot 10^{4}$		7	$4.977 \cdot 10^{4}$		7	$8.745 \cdot 10^{3}$
	8	$7.82 \cdot 10^{4}$		8	$5.143 \cdot 10^{4}$		8	$9.236 \cdot 10^{3}$
	9	$7.479 \cdot 104$		9	$5.181 \cdot 10^{4}$		9	$9.689 \cdot 103$
	10	$7.143 \cdot 10^{4}$		10	$5.121 \cdot 10^{4}$		10	$1.007 \cdot 104$
	11	$6.816 \cdot 10^{4}$		11	$4.995 \cdot 10^{4}$		11	$1.037 \cdot 10^{4}$
	12	$6.501 \cdot 10^{4}$		12	$4.826 \cdot 10^{4}$		12	$1.058 \cdot 10^{4}$
	13	$6.2 \cdot 10^{4}$		13	$4.633 \cdot 10^{4}$		13	$1.07 \cdot 10^{4}$
	14	$5.913 \cdot 10^{4}$		14	$4.428 \cdot 10^{4}$		14	$1.076 \cdot 10^{4}$
	15	---		15	---		15	---

SOLUTION OF PROBLEM-CONT...

$>$ Goal function

$$
\begin{gathered}
G=G\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \\
G=\frac{1}{2} \sum_{k=0}^{n}\left\{a_{1} \dot{Y}_{w, k}+a_{2} Y_{w, k}+a_{3} \dot{Y}_{w v, k}+a_{4} Y_{w v, k}-\frac{Z z_{k}-Z_{k}}{N_{k}}\right\}^{2}
\end{gathered}
$$

Where;

$$
a_{1}=\alpha_{w}^{-1}, \quad a_{2}=\mu_{3} \alpha_{w}^{-1}, \quad a_{3}=\gamma^{-1}, \quad a_{4}=\mu_{4} \gamma^{-1}
$$

$>$ We calculate,
$X_{k}=\frac{\dot{Y}_{w, k}(t)+\mu_{3} Y_{w, k}(t)}{\alpha_{w}} \frac{N_{k}}{Z_{k}}$
$Y_{v, k}=\frac{\dot{Y}_{w v, k}(t)+\mu_{4} Y_{w v, k}(t)}{\gamma} \frac{N_{k}}{Z_{k}}$

NUMERICAL RESULTS-CONT.

Figure 1: Population graph against time with solution of known information

NUMERICAL RESULTS-CONT...

Solution for the known on interpolation and differentiation

$$
\mathrm{dYw}(\mathrm{t}):=\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{Y}_{\mathrm{w}}(\mathrm{t}) \quad \mathrm{dYvw}(\mathrm{t}):=\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{Yvw}(\mathrm{t}) \quad \mathrm{t}:=\mathrm{U}^{\langle 0\rangle}
$$

$$
\left(U^{\langle 0\rangle}\right)_{i}
$$

- . Infected-vaccinated pop.

$$
\mathrm{DYw}_{\mathrm{i}}:=\mathrm{dYw}\left[\left(\mathrm{U}^{(0)}\right)_{\mathrm{i}}\right] \quad \quad \mathrm{DYvw}_{\mathrm{i}}:=\mathrm{dYvw}\left[(\mathrm{U}(0\rangle)_{\mathrm{i}}\right] \quad \mathcal{F}_{i}:=\frac{\left(\mathrm{N}_{\mathrm{i}}-Z_{\mathrm{i}}\right) \cdot Z_{\mathrm{i}}}{\mathrm{~N}_{\mathrm{i}}}
$$

Figure 2: Population graph against time with known information $\left(Z=Y_{W}(t)+Y_{W V}(t)\right)$

SOLUTION OF PROBLEM-CONT...

$>$ By means of Least square method we produce matrix of coefficients and RHS matrices for obtaining of unknown parameters:

$$
\begin{aligned}
& a_{0,0}:=\sum_{i}\left[\left(D \mathrm{Dw}_{\mathrm{i}}\right)^{2}\right] \quad \mathrm{a}_{0,1}:=\sum_{\mathrm{i}}\left[\left(D \mathrm{Drw}_{\mathrm{i}}\right) \cdot\left(\mathrm{Yw}_{\mathrm{i}}\right)\right] \quad \mathrm{a}_{0,2}:=\sum_{\mathrm{i}}\left[\left(\mathrm{DYw} \mathrm{w}_{\mathrm{i}}\right) \cdot\left(\mathrm{DYvw}_{\mathrm{i}}\right)\right] \quad \mathrm{a}_{0,3}:=\sum_{\mathrm{i}}\left[\left(\mathrm{DYw}_{i}\right) \cdot\left(\mathrm{Yvw}_{\mathrm{i}}\right)\right] \quad \mathrm{b}_{0}:=\sum_{\mathrm{i}}\left[\left(\mathrm{DYw}_{\mathrm{i}}\right) \cdot\left(\mathrm{F}_{\mathrm{i}}\right)\right] \\
& \mathrm{a}_{1,1}:=\sum_{\mathrm{i}}\left[\left(\mathrm{Yw}_{\mathrm{i}}\right)^{2}\right] \quad \mathrm{a}_{1,2}:=\sum_{\mathrm{i}}\left[\left(\mathrm{Yw}_{\mathrm{i}}\right) \cdot\left(\mathrm{DYvw} \mathrm{i}_{\mathrm{i}}\right)\right] \\
& \mathrm{a}_{1,3}:=\sum_{\mathrm{i}}\left[\left(\mathrm{Yw}_{\mathrm{i}}\right) \cdot\left(\mathrm{Yvw}_{\mathrm{i}}\right)\right] \quad \mathrm{b}_{1}:=\sum_{\mathrm{i}}\left[\left(\mathrm{Yw}_{\mathrm{i}}\right) \cdot\left(\mathrm{F}_{\mathrm{i}}\right)\right] \\
& \mathrm{a}_{2,2}:=\sum_{\mathrm{i}}\left[\left(\mathrm{DYvw}_{\mathrm{i}}\right)^{2}\right] \quad \mathrm{a}_{2,3}:=\sum_{\mathrm{i}}\left[\left(\mathrm{DYvw}_{\mathrm{i}}\right) \cdot\left(\mathrm{Yvw}_{\mathrm{i}}\right)\right] \quad \mathrm{b}_{2}:=\sum_{\mathrm{i}}\left[\left(\mathrm{DYvw}_{\mathrm{i}}\right) \cdot\left(\mathrm{F}_{\mathrm{i}}\right)\right] \\
& \mathrm{a}_{3,3}:=\sum_{\mathrm{i}}\left[\left(\mathrm{Yvw}_{\mathrm{i}}\right)^{2}\right] \quad \mathrm{b}_{3}:=\sum_{\mathrm{i}}\left[\left(\mathrm{Yvw}_{\mathrm{i}}\right) \cdot\left(\mathrm{F}_{\mathrm{i}}\right)\right]
\end{aligned}
$$

$$
A=\left(\begin{array}{llll}
a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} \\
a_{0,1} & a_{1,1} & a_{1,2} & a_{1,3} \\
a_{0,2} & a_{1,2} & a_{2,2} & a_{2,3} \\
a_{0,3} & a_{1,3} & a_{2,3} & a_{3,3}
\end{array}\right) \quad \quad|A|=9.155 \times 10^{34} \quad \quad B:=b
$$

NUMERICAL RESULTS-CONT...

Solution of parameters and coefficients

Figure 3: Population graph against time comparing the estimated and actual results

Results

> Relative error of estimation in \%

$$
\left|\frac{\left[\mathrm{cw}-\left(\mathrm{a}^{234} 0\right)^{-1}\right]}{\mathrm{ow}}\right|-100=0.036 \quad(\%)
$$

$$
\left|\frac{\left(\mu 3-\frac{a 1234_{1}}{a 1234_{0}}\right)}{\mu^{3}}\right|-100=3.551 \quad(\%)
$$

$$
\left|\frac{\left[\mathrm{g}-\left(\mathrm{a} 1234_{2}\right)^{-1}\right]}{\mathrm{g}}\right| \cdot 100=2.868 \quad(\%)
$$

$$
\left|\frac{\left(14-\frac{\mathrm{a} 1234_{3}}{\mathrm{a} 1234_{2}}\right)}{\mu 4}\right|-100=3.57
$$

Note:
$>$ relative error can be further minimised by increasing the NN points
> All other parameters can be also estimated

DISCUSSIONS AND CONCLUSIONS

> The estimated parameters are calculated accurately
> The obtained $X(t)$ and $Y_{v}(t)$ values are in good qualitative and quantitative correspondence and possible improvement of accuracy could be achieved by proposing other estimation methods
> Applications,
$>$ by researchers in the medical or epidemiology filed for estimation
$>$ big data solutions aimed at restoring incomplete data or information
> predictive analytics

REFERENCES

1. FEDOTOV I. \& SHATALOV M. 2007. On identification of dynamic system parameters from experimental data. RGMIA, Victoria University, 10(1), 2: 106-116.
2. WHO, Global HIV/AIDs Report 2016. Available online from: http: //www.who.int/tb/publications/global_report/en [Accessed on 28th February 2017].
3. Mathye P. , FEDOTOV I. \& SHATALOV M. 2015. On identification of dynamical system parameters from experimental data. BIOMATHS, 4: 1-7.
4. GUMEL A. B., MOGHADAS S. M., MICKENS R. E. 2004. Effect of a preventive vaccine on the dynamics of HIV transmission. Communications in Nonlinear Science and Numerical Simulations, 9: 649-659.

