IDENTIFICATION OF GUMEL-MICKENS HIV MODEL WITH INCOMPLETE DATA ON A POPULATION

M. Ngungu¹, MY. Shatalov², CR. Kikawa³ Tshwane University of Technology ¹Merciend@yahoo.com ²Shatalovm@tut.ac.za ³Richard.kikawa@gmail.com

Department of Mathematics and Statistics

➢Introduction

≻Objectives

- ≻The Gumel-Mickens Model
- >Solution of the problem & numerical results
- Conclusions and applications

≻References

INTRODUCTION

- Challenges/problems of incomplete information or unavailable data in modelling of disease dynamics
- Previously, (Fedotov & Shatalov, 2007) problems on estimation of dynamic system parameters from experimental data in linear systems with respect to their unknown coefficients have been discussed
- > This talk presents a method of identifying mathematical models that can be used to model

HIV/AIDs transmission dynamics in the presence of incomplete data.

INTRODUCTION-CONT...

HIV/AIDS population statistics by end 2015

HIV/AIDS related challenges

- > Affects health of a population,
- consequently, impacts development and social economic growth of households, communities and nations at large.
- Owing to these statistics there is a need to study, design, analyse and solve mathematical models for determining indicators that could give insight into eradicating HIV/AIDs.

OBJECTIVES

- In "On identification of dynamical system parameters from experimental data" the authors, (Mathye, Fedotov and Shatalov, 2004) the Gumel-Mickens HIV transmission model was considered with the aim of estimating the unknown parameters and restoring the information
- > Analogous, with different parameters and coefficients unknown;
 - > Fully identify the Gumel-Mickens HIV transmission model,
 - Find all coefficients of this mathematical model and
 - restore information on
 - > HIV- susceptible population
 - > and uninfected-vaccinated population

> Ultimately, with the key objective of giving insights in eradicating HIV from the community.

THE GUMEL-MICKENS MODEL

HIV transmission model that monitors the dynamics of HIV in four sexually active populations in the presence of vaccines as described by Gumel Moghadas and Mickens

$$D(T) = \begin{cases} \dot{X} = P_1 - \mu_1 X - \alpha_v \frac{XY_V}{N} - \alpha_w \frac{X(Y_W + Y_{WV})}{N} \\ \dot{Y}_V = P_2 - \mu_2 Y_V + \alpha_v \frac{XY_V}{N} - \gamma \frac{Y_V(Y_W + Y_{WV})}{N} \\ \dot{Y}_W = -\mu_3 Y_W + \alpha_w \frac{X(Y_W + Y_{WV})}{N} \\ \dot{Y}_{WV} = -\mu_4 Y_{VW} + \gamma \frac{Y_V(Y_W + Y_{WV})}{N} \\ \end{cases}$$

With $t > t_0$ and initial conditions:

$$\begin{aligned} X(t_0) &= X_0, & Y_W(t_0) &= Y_{W0}, \\ Y_V(t_0) &= Y_{V0}, & Y_W(t_0) &= Y_{W0}, \end{aligned}$$

Parameter	Interpretation						
X(t)	Population susceptible to HIV						
$Y_V(t)$	Individuals uninfected by wild type and vaccinated population						
$Y_W(t)$	Individuals infected by wild type and unvaccinated population						
$Y_{WV}(t)$	Individuals infected by wild type and vaccinated population						
$Z = Y_W(t) + Y_{WV}(t)$	Infected by wild type and vaccinated population						
$ZZ = X(t) + Y_V(t)$	Healthy population						
$N(t) = X(t) + Y_V(t) + Y_W(t) + Y_{WV}(t)$	Total (sexually active) population						
Р	Recruitment rate of susceptible population						
μ_1,μ_2,μ_3,μ_4	Natural cessation of sexual activity						
α_w and α_v	Rate of transmission of virus and vaccine, respectively						
γ	Degree of protection against virus						

Above parameters are taken from "Effect of a preventive vaccine on dynamics of HIV transmission" by A.B. Gumel, S.M. Moghadas and R.E. Mickens //Communications in nonlinear Science and Numerical Simulations, 9 2004, pp.649-659.

THE GUMEL-MICKENS MODEL-CONT...

 $N = X + Y_V + Y_W + Y_{WV}$

P. Mathye : N, X, Y_V - are known

 $Z = Y_W + Y_{WV} = N - X - Y_V$ - also known

But: $Y_W = Y_W(t)$ and $Y_{WV} = Y_{WV}(t)$ - are not known

In this case: N, Y_W, Y_{WV} - are known $ZZ = N - (Y_W + Y_{WV}) = X + Y_V$ - also known But: X = X(t) and $Y_V = Y_V(t)$ - are not known

and coefficients are unknown

THE GUMEL-MICKENS MODEL-CONT...

Assumptions:

- \succ all dependent variables of G-M model and parameters are non-negative,
- > all new individuals recruited into the society (either via birth or immigration) at a rate P per year are considered to be susceptible analogous to Gumel *et al.*,
- > population is reduced by the natural cessation of sexual activity at a constant rate l, and by infection with the virus which may be acquired from each new sexual partner at a rate α_w .

SOLUTION OF PROBLEM

> Stage 1:

- > Use direct method of initial problem solving
- assume that all parameters and initial conditions of the four populations are known as below and solve the system numerically using Computer Algebra System (CAS)

pi := 2000	p := 0.8	c := 5.0	$\beta v := 0.5$	βw := 0.45	ψ := 0.6
μ := <mark>0.031</mark>	d1 := 0.3	d2 := 0.25	d3 := 0.2		

> Recalculation of the parameters into new parameters

9

System of ODE with known parameters

Right hand side of the Cauchy system $(\mathbf{u}_0 = X, \mathbf{u}_1 = Y_v, \mathbf{u}_2 = Y_w, \mathbf{u}_0 = Y_{vw})$:

$$D(t, \mathbf{u}) := \begin{bmatrix} p1 - \left[\alpha v \cdot \frac{\mathbf{u}_0 \cdot \mathbf{u}_1}{(\mathbf{u}_0) + (\mathbf{u}_1) + (\mathbf{u}_2) + (\mathbf{u}_3)} \right] - \left[\alpha w \cdot \frac{\mathbf{u}_0 \cdot (\mathbf{u}_2 + \mathbf{u}_3)}{(\mathbf{u}_0) + (\mathbf{u}_1) + (\mathbf{u}_2) + (\mathbf{u}_3)} \right] - \mu 1 \cdot \mathbf{u}_0 \\ p2 + \left[\alpha v \cdot \frac{\mathbf{u}_0 \cdot \mathbf{u}_1}{(\mathbf{u}_0) + (\mathbf{u}_1) + (\mathbf{u}_2) + (\mathbf{u}_3)} \right] - \left[g \cdot \frac{\mathbf{u}_1 \cdot (\mathbf{u}_2 + \mathbf{u}_3)}{(\mathbf{u}_0) + (\mathbf{u}_1) + (\mathbf{u}_2) + (\mathbf{u}_3)} \right] - \mu 2 \cdot \mathbf{u}_1 \\ \left[\alpha w \cdot \frac{\mathbf{u}_0 \cdot (\mathbf{u}_2 + \mathbf{u}_3)}{(\mathbf{u}_0) + (\mathbf{u}_1) + (\mathbf{u}_2) + (\mathbf{u}_3)} \right] - \mu 3 \cdot \mathbf{u}_2 \\ \left[g \cdot \frac{\mathbf{u}_1 \cdot (\mathbf{u}_2 + \mathbf{u}_3)}{(\mathbf{u}_0) + (\mathbf{u}_1) + (\mathbf{u}_2) + (\mathbf{u}_3)} \right] - \mu 4 \cdot \mathbf{u}_3 \end{bmatrix}$$

Initial conditions are also taken from the abovementioned paper:

$$\mathbf{u} := \left(80 \cdot 10^3 \ 2 \cdot 10^3 \ 8 \cdot 10^3 \ 8 \cdot 10^3 \right)^{\mathrm{T}}$$

Time interval (T) is different (shorter than in the previously cited paper). NN is number of interval onto given time interval.

 $T_{i} := 5$ NN := 25 i := 0.. NN

Solution of system of equation by the specific method:

 $U := Adams(u, 0, T, NN, D) \qquad TOL = 1 \times 10^{-3}$

Time interval (T) is different (shorter than in the previously cited paper). NN is number of interval onto given time interval.

T := 5 NN := 25 i := 0.. NN

Solution of system of equation by the specific method:

 $U := Adams(u, 0, T, NN, D) \qquad TOL = 1 \times 10^{-3}$

- Stage 2:
 - > Forget the values of the parameter and assume that we know only N total population and Y_W population infected, $Y_{WV}(t)$ -population infected-vaccinated
 - > It is also known that the sum $N Y_W Y_{WV} = N Z = X + Y_V$, that is the sum of healthy population

$$\begin{split} \sum_{\mathbf{N}_{i}} &:= \left(\mathbf{U}^{\langle 1 \rangle} \right)_{i} + \left(\mathbf{U}^{\langle 2 \rangle} \right)_{i} + \left(\mathbf{U}^{\langle 3 \rangle} \right)_{i} + \left(\mathbf{U}^{\langle 4 \rangle} \right)_{i} & \mathbf{Z}_{i} := \left(\mathbf{U}^{\langle 3 \rangle} \right)_{i} + \left(\mathbf{U}^{\langle 4 \rangle} \right)_{i} & \mathbf{U}^{\langle 2 \rangle} = \mathbf{Y}_{v} \\ \mathbf{Z}_{i} := \mathbf{N}_{i} - \mathbf{Z}_{i} & \mathbf{Y}_{v} := \mathbf{U}^{\langle 3 \rangle} & \mathbf{Y}_{v} := \mathbf{U}^{\langle 4 \rangle} & \mathbf{U}^{\langle 4 \rangle} \\ \end{split}$$

< 1 >

> Interpolation and subsequent differentiation using CAS

$$VYw := cspline[(U^{\langle 0 \rangle}), U^{\langle 3 \rangle}]$$

$$VYvw := cspline(U^{\langle 0 \rangle}, U^{\langle 4 \rangle})$$

$$Yw(t) := interp(VYw, U^{\langle 0 \rangle}, U^{\langle 3 \rangle}, t)$$

$$Yvw(t) := interp(VYvw, U^{\langle 0 \rangle}, U^{\langle 4 \rangle}, t)$$

NUMERICAL RESULTS

Numerical solutions

		0			0			0
N =	0	9.8·10 ⁴	YW =	0	8·10 ³		0	8·10 ³
	1	9.679.104		1	1.397.104	YVW =	1	7.725·10 ³
	2	9.52·10 ⁴		2	2.086.104		2	7.544·10 ³
	з	9.32.104		з	2.823.104		З	7.493·10 ³
	4	9.078.104		4	3.541.104		4	7.601·10 ³
	5	8.798.104		5	4.17.104		5	7.869·10 ³
	6	8.489·10 ⁴		6	4.655.104		6	8.269·10 ³
	7	8.159.104		7	4.977·10 ⁴		7	8.745·10 ³
	8	7.82.104		8	5.143·10 ⁴		8	9.236·10 ³
	9	7.479·10 ⁴		9	5.181.104		9	9.689·10 ³
	10	7.143·10 ⁴		10	5.121.104		10	1.007.104
	11	6.816.104		11	4.995·10 ⁴		11	1.037.104
	12	6.501.104		12	4.826·10 ⁴		12	1.058.104
	13	6.2.104		13	4.633.104		13	1.07.104
	14	5.913.104		14	4.428.104		14	1.076.104
	15			15			15	

13

Goal function

$$G = G(a_1, a_2, a_3, a_4)$$

$$G = \frac{1}{2} \sum_{k=0}^{n} \{ a_1 \dot{Y}_{w,k} + a_2 Y_{w,k} + a_3 \dot{Y}_{wv,k} + a_4 Y_{wv,k} - \frac{ZZ_k - Z_k}{N_k} \}^2$$

Where;

$$a_1 = \alpha_w^{-1}$$
, $a_2 = \mu_3 \alpha_w^{-1}$, $a_3 = \gamma^{-1}$, $a_4 = \mu_4 \gamma^{-1}$

> We calculate,

$$X_k = \frac{\dot{Y}_{w,k}(t) + \mu_3 Y_{w,k}(t)}{\alpha_w} \frac{N_k}{Z_k}$$

$$Y_{v,k} = \frac{\dot{Y}_{wv,k}(t) + \mu_4 Y_{wv,k}(t)}{\gamma} \frac{N_k}{Z_k}$$

BIOMATH 2017

14

NUMERICAL RESULTS-CONT...

Figure 1: Population graph against time with solution of known information

NUMERICAL RESULTS-CONT...

> Solution for the known on interpolation and differentiation

16

Figure 2: Population graph against time with known information ($Z = Y_W(t) + Y_{WV}(t)$)

By means of Least square method we produce matrix of coefficients and RHS matrices for obtaining of unknown parameters:

$$\begin{split} a_{0,0} &\coloneqq \sum_{i} \left[(DYw_{i})^{2} \right] \quad a_{0,1} &\coloneqq \sum_{i} \left[(DYw_{i}) \cdot (Yw_{i}) \right] \quad a_{0,2} &\coloneqq \sum_{i} \left[(DYw_{i}) \cdot (DYvw_{i}) \right] \quad a_{0,3} &\coloneqq \sum_{i} \left[(DYw_{i}) \cdot (Yvw_{i}) \right] \quad b_{0} &\coloneqq \sum_{i} \left[(DYw_{i}) \cdot (F_{i}) \right] \\ a_{1,1} &\coloneqq \sum_{i} \left[(Yw_{i})^{2} \right] \quad a_{1,2} &\coloneqq \sum_{i} \left[(Yw_{i}) \cdot (DYvw_{i}) \right] \quad a_{1,3} &\coloneqq \sum_{i} \left[(Yw_{i}) \cdot (Yvw_{i}) \right] \quad b_{1} &\coloneqq \sum_{i} \left[(Yw_{i}) \cdot (F_{i}) \right] \\ a_{2,2} &\coloneqq \sum_{i} \left[(DYvw_{i})^{2} \right] \quad a_{2,3} &\coloneqq \sum_{i} \left[(DYvw_{i}) \cdot (Yvw_{i}) \right] \quad b_{2} &\coloneqq \sum_{i} \left[(DYvw_{i}) \cdot (F_{i}) \right] \\ a_{3,3} &\coloneqq \sum_{i} \left[(Yvw_{i})^{2} \right] \quad b_{3} &\coloneqq \sum_{i} \left[(Yvw_{i}) \cdot (F_{i}) \right] \\ a_{3,3} &\coloneqq \sum_{i} \left[(Yvw_{i})^{2} \right] \quad b_{3} &\coloneqq \sum_{i} \left[(Yvw_{i}) \cdot (F_{i}) \right] \\ a_{3,3} &\coloneqq \sum_{i} \left[(Yvw_{i})^{2} \right] \quad b_{3} &\coloneqq \sum_{i} \left[(Yvw_{i}) \cdot (F_{i}) \right] \\ a_{3,3} &\coloneqq \sum_{i} \left[(Yvw_{i})^{2} \right] \quad a_{1,2} &\coloneqq \sum_{i} \left[(Yvw_{i}) \cdot (F_{i}) \right] \\ a_{3,3} &\coloneqq \sum_{i} \left[(Yvw_{i})^{2} \right] \quad a_{1,2} &\coloneqq \sum_{i} \left[(Yvw_{i}) \cdot (F_{i}) \right] \\ a_{1,2} &\coloneqq \sum_{i} \left[(Yvw_{i})^{2} \right] \quad a_{2,3} &\coloneqq \sum_{i} \left[(Yvw_{i})^{2} \right] \\ a_{2,3} &\coloneqq \sum_{i} \left[(Yvw_{i})^{2} \right] \quad a_{2,3} &\coloneqq \sum_{i} \left[(Yvw_{i})^{2} \right] \\ a_{3,3} &\coloneqq \sum_{i} \left[(Yvw_{i}) \cdot (F_{i}) \right] \\ a_{3,3} &\coloneqq \sum_{i} \left[(Yvw_{i})^{2} \right] \quad a_{2,3} &\coloneqq \sum_{i} \left[(Yvw_{i})^{2} \right] \\ a_{3,3} &\coloneqq \sum_{i} \left[(Yvw_{i})^{2} \right] \quad a_{3,3} &\coloneqq \sum_{i} \left[(Yvw_{i})^{2} \right] \\ a_{3,3} &\coloneqq \sum_{i} \left[(Yvw_{i})^{2} \right] \\ a_{3,3} &\coloneqq \sum_{i} \left[(Yvw_{i})^{2} \right] \quad a_{3,3} &\coloneqq \sum_{i} \left[(Yvw_{i})^{2} \right] \\ a_{3,3} &\coloneqq \sum_{i} \left[(Yvw_{i})^{2} \right] \quad a_{3,3} &\coloneqq \sum_{i} \left[(Yvw_{i})^{2} \right] \\ a_{3,3} &\coloneqq \sum_{i} \left[(Yvw_{i})^{2} \right] \\ a_{3,3} &\coloneqq \sum_{i} \left[(Yvw_{i})^{2} \right] \quad a_{3,3} &\coloneqq \sum_{i} \left[(Yvw_{i})^{2} \right] \\ a_{3,3} &\coloneqq \sum_{i} \left[(Yvw_{i})^{2} \right] \quad a_{3,3} &\coloneqq \sum_{i} \left[(Yvw_{i})^{2} \right] \\ a_{3,3} &\coloneqq \sum_{i} \left[(Yvw_{i})^{2} \right] \\ a_{3,3} &\coloneqq \sum_{i} \left[(Yvw_{i})^{2} \right] \quad a_{3,3} &\coloneqq \sum_{i} \left[(Yvw_{i})^{2} \right] \\ a_{3,3} &\coloneqq \sum_{i} \left[(Yvw_{i})^{2} \right] \quad a_{3,3} &\coloneqq \sum_{i} \left[(Yvw_{i})^{2} \right] \\ a_{3,3} &\coloneqq \sum_{i} \left[(Yvw_{i})^{2} \right] \quad a_$$

NUMERICAL RESULTS-CONT...

> Solution of parameters and coefficients

Figure 3: Population graph against time comparing the estimated and actual results

Results

Relative error of estimation in %

$$\left|\frac{\left[\cos w - (a1234_{0})^{-1}\right]}{\cos w}\right| \cdot 100 = 0.036 \quad (\%)$$

$$\left|\frac{\left[u^{3} - \frac{a1234_{1}}{a1234_{0}}\right]}{\mu^{3}}\right| \cdot 100 = 3.551 \quad (\%)$$

$$\left|\frac{\left[g - (a1234_{2})^{-1}\right]}{g}\right| \cdot 100 = 2.868 \quad (\%)$$

$$\left|\frac{\left[u^{4} - \frac{a1234_{3}}{a1234_{2}}\right]}{\mu^{4}}\right| \cdot 100 = 3.57 \quad (\%)$$

Note:

- > relative error can be further minimised by increasing the NN points
- > All other parameters can be also estimated

DISCUSSIONS AND CONCLUSIONS

> The estimated parameters are calculated accurately

> The obtained X(t) and $Y_{v}(t)$ values are in good qualitative and quantitative

correspondence and possible improvement of accuracy could be achieved by proposing other estimation methods

- \succ Applications,
 - > by researchers in the medical or epidemiology filed for estimation
 - \succ big data solutions aimed at restoring incomplete data or information
 - > predictive analytics

REFERENCES

- FEDOTOV I. & SHATALOV M. 2007. On identification of dynamic system parameters from experimental data. *RGMIA*, Victoria University, 10(1), 2: 106 – 116.
- ^{2.} WHO, Global HIV/AIDs Report 2016. Available online from: http://

//www.who.int/tb/publications/global_report/en [Accessed on 28th February 2017].

- 3. Mathye P., FEDOTOV I. & SHATALOV M. 2015. On identification of dynamical system parameters from experimental data . BIOMATHS, 4: 1-7.
- 4. GUMEL A. B., MOGHADAS S. M., MICKENS R. E. 2004. Effect of a preventive vaccine on the dynamics of HIV transmission. *Communications in Nonlinear Science and Numerical Simulations*, 9: 649-659.

