THE DRIVER FATIEUE STUDY: DETAILS OF the simulated journey and amendments
to the computer procram

HSRC Library and Information Service

RGN-Biblioteek en Inligtingsdiens

CSIR PERS 333 (pp. i - iv; 1 - 62)
UDC 656.1:371.963.4]: 159.944.2:519.6] (680 = 963)
Johannesburg, Republic of South Africa, November 1981

NATIONAL INSTITUTE FOR PERSONNEL RESEARCH COUNCIL FOR SCIENTIFIC AND INDUSTRIAL RESEARCH

National Institute for Personnel Research Council for Scientific and Industrial Research P O Box 32410
BRAAMFONTEIN Republic of South Africa

November 1981

Printed in the Republic of South Africa by National Institute for Personnel Research

SPONSOR:
National Road Safety Council

NIPR:

Dr. G.K. Nelson (Director)
Mr. D.J. Buttress
Mrs. S.D. Horsman
Miss S. Tham
Mrs. S. Steenkamp (Typist)

NRIMS:

Dr. D.H. Martin (Director)
Mr. P. Roets
Mr. H.P. Gorringe

SUMMARY

This report deals with details of the simulated journey which is the basis for the Driver Fatigue study (Project no. 9015,4). Several dmendments to the computer program specifications stated in an earlier report (PERS 288) are described in detail.

OPSOMMING

Hierdie verslag handel oor besonderhede van die nagebootste reis wat die basis van die bestuurdersvermoeidheidprojek vorm (projeknomer 9015,4). Verskeie wysigings van die rekenaarprogramspesifikasies wat in h vorige verslag (PERS 288) vermeld is, word breedvoerig beskryf.
ACKNOWLEDGEMENTS iii
SUMMARY iii
OPSOMMING iii

1. INTRODUCTION 1
2. ANALOGUE DATA 3
2.1 Criteria for continuous storage 3
2.2 Sampling rates for analogue signals 4
2.3 Amount of analogue data stored 4
2.4 Analogue outputs 5
3. SUMMARY STATISTICS 6
4. AMENDMENTS TO PERS 288 - CONTROL OF 7 SIMULATOR AND DISPLAY OF INFORMATION
4.1 Video Display Unit 7
4.2 Slide projectors and slide numbers 9
4.3 Operation of risk slide sequence 9
4.4 Change of road sign slide magazine 12
5. CONTROL OF EVENTS FROM DISTANCE COUNTS 13
5.1 Detailed descriptions of some computer-controlled events 16
6. DATA PRINTOUT 22
7. RISK SLIDE CODING 24
8. REFERENCES 25
9. APPENDIX A: List of computer-controlled events 26
10. APPENDIX B: Risk slide numbers and flags 60
LIST OF TABLES
Table 1 : High and low stimulus density zones 24
Table 2 : Distribution of risk sequence lengths 25

1. INTRODUCTION

This report is a sequel to PERS 288: "Computer programme specifications for study of driver fatigue" (Connell, Denton and Buttress, 1979). A detailed description of every oomputer-controlled event in the eight-hour simulated journey from Johannesburg to Durban is provided, and amendments and additions to the specifications outlined in PERS 288 are discussed in detail.

Several amendments to the original specifications have been made. The most important concerns the sampling of analogue data. In PERS 288 the amount of magnetic tape required for file markers, inter-record gaps, etc. was considerably underestimated, and thus an over-optimistic calculation of the amount of analogue data which could be stored was made. The amount of data collected per subject (4,03 MBytes) would have required a considerable amount of computer processing, and this would have been prohibitively expensive.

In the light of the above, the following changes have been made with respect to the sampling of anaiogue data:
(1) continuous storage of analogue data has been made contingent upon certain environmental events and driver violations only, and will occur for relatively short periods of time. These records will be used later to drive the pens of a recorder or X - Y plotter to allow visual analysis of the finer details of driver behaviour to be made;
(2) analogue signals will be monitored on a continuous basis throughout the journey. Summary statistics for each variable (analogue and digital) will be calculated for blocks of 224 distance pulses (i.e. every $3,36 \mathrm{~km}$). This will form the basic data of the experiment. Thus 165 data points per variable will be obtained over the entire journey;
(3) the sampling rates for some analogue inputs were initially high enough to possibly interfere with the operation of the computer. Sampling rates have been reduced to more acceptable levels.

Statistical analysis will be based on the data generated by the low sampling rate, while the raw data produced by the higher sampling rate will be used by the experimenter, chiefly as an aid to the interpretation of the computer analysis. In addition, more detailed data is required for the analysis of the more complex "fine structure" of behaviour associated with significant environmental stimuli. As an example, it may prove useful to compute the changes in physiological activity in response to road signs signalling danger and compare this with the changes associated with more neutral road signs.

The other major amendment to the original specifications concerns the use of the video display unit (VDU) for communication of status information to the operator. The initial plan was for the operator to receive information regarding equipment malfunctions, distance travelled, etc. via various displays, lights and buzzers on the console. This would have been very inconvenient for the operator who would have had to sit in almost complete darkness as the console is situated next to the driver's cab and a night drive is being simulated. As more detailed and meaningful information can be displayed on the VDU, this will now become the primary link between the operator and the simulator. The VDU will be located in an adjacent room, thus enabling the operator to do other work.

Further details regarding the information to be displayed on the VDU may be found in Section 4.1.

The computer program based on this report and PERS 288 is strictly applicable to phases 1 and 2 of the driver fatigue project only. In phase 1 drivers will be required to remain at the wheel for as long as possible, while in phase 2 drivers will be allowed to stop for short rests on demand. Phase 3 of this study, in which subjects will be required to stop at pre-determined points along the route, may require slight adjustments to the program. However, these can be made only after a preliminary data analysis of phases 1 and 2 has been carried out.
2. analogue data
2.1 Criteria for continuous storage

Analogue data will be continuously stored according to the following criteria:
(1) all three urban zones plus approximately 15 minutes into adjacent rural zones, i.e., distance count 0 to 2172 , 16644 to 20260, and 35190 to 36960. As the driver will not necessarily stop at the last distance count, continuous storage may continue further until he does stop. This is described in greater detail in Section 5.1;
(2) approximately 10 seconds before, during, and 10 seconds after any road sign not already included under (1) above;
(3) during any risk slide sequence, and for 20 seconds* after the dumy slide has been projected (see PERS 288, Section 5.4 for details of the risk sequence).
(4) 30 seconds* after the police siren is sounded;
(5) 20 seconds* after the risk or police probability generators have been sampled as a result of driver violations (NB: This must occur irrespective of the results of sampling of the probability generators);
(6) over certain sections of the journey (in rural zones) where the driver is subject to very little stimulation. This data will serve as a baseline against which data obtained in high stimulus density areas may be compared. The relevant distance count values are stated in Appendix A.

The distance count values at which continuous storage is to be started and stopped according to criteria (1) and (2) have been listed in the sequence of computer-controlled events in Appendix A. These distance counts are based on vehicle speeds of 60 or $90 \mathrm{kmh}^{-1}$, but as actual speed will differ, the amount of data stored will vary slightly from subject to subject.
*All numerical values marked with an asterisk are parameters which can be varied by the computer operator.

2.2 Sampling rates for analogue signals

An examination of the properties of the various physiological signals (Venables and Martin, 1967; Strong, 1970) as well as those of the simulated vehicle (McRuer, Peters, Ringland, Allen, Blanvelt and Weir, 1974) has revealed that smaller bandwidths may be expected than those which were quoted in PERS 288. In view of this, the following sampling rates för analogue data are suggested:

heart rate (interbeat interval)	$: 4 \mathrm{~Hz}$
breathing rate	$: 2 \mathrm{~Hz}$
electromyogram	$: 2 \mathrm{~Hz}$
skin conductance level	$: 2 \mathrm{~Hz}$
vehicle speed	$: 8 \mathrm{~Hz}$
steering error	$: 8 \mathrm{~Hz}$
steering wheel angle	$: 12 \mathrm{Hm}$

```
Total effective sampling rate : 38 H8
```

In order to prevent aliasing (i.e. an incorrect representation of the frequency properties of signals due to an inadequate sampling rate), all analogue inputs will be electronically low-pass filtered before conversion to digital form.

2.3 Ampunt of analogue data stored

The time associated with continuous storage of analogue data as shown in point (1) is approximately two hours. The remaining data is mostly associated with 188 road signs, each of which corresponds to a sample time of approximately 40 seconds. The total amount of "raw" analogue data to be stored (assuming two bytes per sample) is therefore: $\left\{\left(\begin{array}{l}2 \times 3600 \times 38)\end{array}\right.\right.$ + $(188 \times 40 \times 38)\} \times 2=1,12$ Mbytes.

This is a considerable reduction from the 4,03 Mbytes calculated in PERS 288.

The amount of data associated with summary statistics (see Section 3 for details) is negligible as only 165 data points per variable will be stored.

2.4 Analogue outputs

The two analogue outputs generated by the computer are:
(1) steering demand; and
(2) road "gradient".

The output frequency of these variables should match those of the corresponding analogue inputs (i.e. steering error/steering wheel position and vehicle speed). This requirement can be relaxed in the case of road gradient since vehicle speed may change at a much higher rate than the gradient of the road. The following analogue output frequencies are suggested:

```
steering demand : 8 Hz
road gradient : 0,5 Hz
```

There are a number of different procedures for generating the pseudo-random outputs required for these variables. In PERS 288 it was suggested that a series of aine functions with frequencies not harmonically related be used. This method had the advantage of producing an output with precisely defined frequency characteristics. In the case of steering demand, it was possible to model both low and high frequencies corresponding to road curves and wind gusts or road irregularities respectively. An equally effective method involves the integration over time of a series of pseudorandom numbers. Although it may be difficult to choose a series of random numbers which will produce the required frequency characteristics when integrated, this method is possibly more efficient in terms of computing time and is therefore more attractive.

Irrespective of the method used, these analogue outputs must have the following properties:
(1) Steering demand must have a bandwidth from DC to $0,8 \mathrm{~Hz}$ * maximum. Road gradient must have a bendwidth from $D C$ to $0,05 \mathrm{~Hz}$ * maximum.
(2) For both steering demand and road gradient, the frequency must increase with increasing vehicle velocity.
(3) For steering demand, the output must be zero when the vehicle velocity is zero;
(4) For road gradient, the output must be a constant when vehicle velocity is zero.

The bandwidths suggested above are provisional and should be regarded as parameters which may be altered during the pilot study.

3. SUMMARY STATISTICS

The basic data of this study will consist of average values for variables calculated over blocks of 224 distance pulses. Averages for analogue signals need not be based on the sampling rates of Section 2.2. If spare processing time is not available, lower sampling rates can be used; however it is recommended that the highest possible sampling rates commensurate with orderly functioning of the computer be used.

Since the calculation of averages requires division, which is time-consuming, running or cumulative totals may be stored instead. Averages may then be calculated after completion of the experiment. The storage of totals allows analogue and digital (discrete event) data to be treated in a similar way.

The following data must be calculated and stored every 224 distance pulses (variables marked with an asterisk are counts from which averages cannot be meaningfully calculated);
(1) skin conductance level (SCL)
(2) neck muscle tension (EMG)
(3) heart rate (HR)
(4) breathing rate (BR)
(5) vehicle speed
(6) root-mean-square steering error
(7) root-mean-square steering wheel position
(8) number of brake "on" responses*
(9) brake reaction time to road signs requiring stops (measured from the time the computer changes to the relevant slide)
(10) brake reaction time to emergency stimulus (default to largest possible negative number if there have not been any emergency stimuli)
(11) number of random lights, field $1 *$
(12) number of random lights, field 2*
(13) number of random lights, field 3*
(14) number of random lights, field 4*
(15) number of missed lights, field 1*
(16) number of missed lights, field 2*
(17) number of missed lights, field 3*
(18) number of missed lights, field 4*
(19) number of spurious responses to random lights (i.e. any response occuring more than 5s* after a light)
(20) reaction time to random lights, field 1
(21) reaction time to random lights, field 2
(22) reaction time to random lights, field 3
(23) reaction time to random lights, field 4
(24) number of samples of risk probability generators (due to driver violations only)*
(25) number of times police siren is activated*
(26) number of risk slide sequences (excluding pre-programmed sequences)*
(27) number of pre-programmed risk sequences encountered*
(28) driver's accumulated "behaviour index"*
(29) number of stops not associated with a road sign*
(30) real time at end of block*
(31) number of projector failures (road signs)*
(32) number of projector failures (risk stimuli)*
4. AMENDMENTS TO PERS 288 - CONTROL OF SIMULATOR AND DISPLAY OF INFORMATION

4.1 Video Display Unit

Due to its flexibility of use and the greater amount of information which may be displayed, the VDU will be the primary source of information regarding the status of the simulator, and thus replaces some dedicated hardware described in PERS 288. The VDU will also be used to load programs and lists of parameters from floppy disks into core memory, and will be the means by
which parameters will be changed during the pilot study (as an alternative, the teletype can be used for this function - thus allowing a "hardcopy" of the current parameters to be generated).

Three inputs (to the computer) which are affected by this change are the START and STOP switches (PERS 288, Sections 3.4.7 and 5.7) and the projector reset switch (PERS 288, Sections 3.4 .6 and 5.5). These will be replaced by three different keycodes (terminated by a carriage return) which the operator will enter from the keyboard.

Three outputs which must be changed are the slide change malfunction indicators (PERS 288, Sections 3.5.4 and 5.5) and the rest/end of journey indicator (Sections 3.5.8 and 5.10). In each case, the relevant information will be displayed on the VDU as a short, unambiguous message, reinforced by the sounding of the terminal's buzzer at half-second intervals. The buzzer is stopped by the operator's response; in the case of the rest/ end of journey message, the operator must respond by keying in the stop command, while in the case of a slide change malfunction the operator should key in the number of the projector in question.

In order to keep the operator informed of the progress of the experiment, certain information should be permanently displayed on the VDU (or should be callable by means of simple keycodes). The following information should be displayed:
(1) real time (24-hour clock);
(2) real time elapsed since the start of the experiment;
(3) distance count value;
(4) per cent of total distance travelled;
(5) distance travelled (decimal kilometres);
(6) zone (urban 1, rural 1, urban 2 , rural 2 or urban 3);
(7) per cent of magnetic tape used (updated whenever data transfers occur);
(8) status of data logging operations (paused or proceeding);
(9) vehicle speed (kilometres per hour);
(10) steering error (arbitrary decimal units; updated every 8th sample);
(11) anomalous driver behaviour (e.g. driver stops at a green traffic signal or "GO" sign; vehicle remaining stationary 10 seconds* after the emergency stimulus has disappeared - see Section 4.3 for further details).
(12) anomalous analogue inputs (maximum possible values reached);
(13) computer errors (e.g. parity/checksum errors, buffer overflow, etc.).

It will be useful if the VDU screen can be divided into various zones which can be dedicated to the display of a particular message or class of messages.
4.2 Slide projectors and slide numbers

At the time of writing of PERS 288, GAF slide projectors having a capacity of 100 slides per magazine were in use. It has since been discovered that the reliability of the slide change mechanism of this type of projector is not sufficient for the fatigue experiment, and thus Kodak "Carousel"type projectors will be used instead. Since these have a capacity of 80 slides per magazine, slides will now be numbered from 1 to 80 . Slide magazines for road signs will not necessarily be filled, however, as it is necessary that changeover from one magazine to the next should occur in a region of very little activity in order that the journey be disrupted as little as possible. Regardless of the actual number of slides in a magazine, the first slide will always be numbered 1 (according to the format described in PERS 288, Fig. 4), while the last slide will always be numbered 80.

Because the risk slide sequences are cyclic, the risk slide magazine will be completely filled (see PERS 288, Section 5.5 for details). Position 0 in the Carousel magazine cannot be occupied by a slide. It is therefore necessary that the computer issue an extra slide change command when slide 80 is read. This will ensure that the projector is ready to change to the first risk slide (slide 1) when the next risk sequence is called by the computer.

4.3 Operation of risk slide sequence

The operation of the risk slide projector was described in PERS 288, Sections 5.4 and 5.11.1. Discussion with programmers at NRIMS has revealed that some aspects of projector control were amitted from the specifications, while others posed severe problems with regard to their implementation. In order to resolve these issues, the following points should be noted:
(1)
risk slides are coded sequentially from 1 to 80 , the code being read by the computer approximately 1,5 sec̣onds* after a slide change command has been issued by the computer;
(2) associated with each slide will be two "flags" (in the computer's memory) which will indicate whether the slide is an emergency stimulus or a dummy stimulus respectively. The driver is required to make an emergency stop in response to the emergency stimulus, while the dummy stimulus cannot be seen by the driver and is used to indicate to the computer that it should exit from the risk sequence subroutine. A list of slide numbers and associated flags can be found in Appendix B.
the actions taken by the computer whenever the emergency slide is detected were not fully covered in PERS 288. A stricter criterion for determining whether the driver is making an emergency stop is required, and the following procedure is suggested:
(i) when the emergency stimulus is detected, the computer must look at the state of the brake pedal. If brakes are already being applied, no brake reaction time to the stimulus can be computed, and a code signifying this condition, together with real time, correct to one millisecond, must be stored as data. If brakes are not being applied, a timer is started. This timer is stopped when a brake response occurs, and the resulting reaction time is computed and stored as data;
(ii) 1,5 seconds* after the emergency stimulus, the state of the brake pedal must again be tested (irrespective of whether a brake response was made earlier). If the brakes are not being applied, the police siren is sounded and points are subtracted from the drivers "behaviour index". (NOTE: the police siren is not contingent upon the output of the probability generator, as was stated in PERS 288). Whenever the police siren is sounded, the computer must advance to the dumy risk slide stimulus, and then exit from the risk subroutine;
(iii) if brakes are being applied, the computer must continue to interrogate the brake pedal at 1,5 second* intervals, as described above;
(iv) the computer should also monitor vehicle speed every 1,5 seconds*. As soon as speed falls below a threshold Ve (the value of which is a parameter determined in the pilot study) the computer advances the dummy stimulus;
(v) if by the $10 \mathrm{th}^{*}$ sample of the brake pedal, vehicle velocity. is still greater than Ve , then the police siren must be sounded. The dummy slide is then advanced, correct recognition of which signals the computer to exit from the risk subroutine;
(vi) the disappearance of the emergency stimulus signals the driver to increase speed again. There is a small chance that he will not do so. To allow for this eventuality, vehicle speed must always be sampled 10 seconds* after the dummy stimulus is detected. If the speed is still less than Ve and a road sign requiring a stop is not being simultaneously displayed, then a message must be displayed on the VDU screen (e.g. "end of emergency - driver not proceeding"). The operator may then instruct the driver to continue his journey.
(4) In PERS 288, Section 5.11.1, the problem of "continuous" sampling of the probability generators was discussed, and measures to overcome this were proposed. Discussion with the programmers has revealed that these measures are impractical, and therefore they have been scrapped. This is justified as the probabilities associated with the generators are low enough to prevent a "continuous" sequence of risk slides or police sirens from occurring. In any event, a risk probability generator cannot be sampled while a risk sequence is already in operation, and this in itself puts a restraint on the frequency of risk sequences. As regards sampling of the police siren probability generator, the problem is much reduced as probabilities are lower. If the police siren were to be operated a few times in succession, the driver should be sufficiently alerted to his continuous error and should therefore correct it.
(5) The probability of physical risk or police detection as a result of continuous steering errors (measured as a root-mean-square value over a period T) has been altered. Referring to PERS 288, Section 5.11.1, point (5);

> if $\mathrm{e}_{s i}$ (rms) $\geqslant \mathrm{E}_{s e} \quad$ then $\mathrm{p}($ risk slides $)=\mathrm{L}$
> $\mathrm{p}($ police $)=\mathrm{L}$
for both urban and rural zones

4.4 Change of road sign slide magazine

The description of the sequence of events which occur when a road sign slide magazine has to be changed, was given only sketchily.in PERS 288, Section 5.5 , pp. 27 - 28 . It is necessary to pay more attention to details as the slide fader has to be operated in a different way to allow the slide code for slide number 1 to be read immediately (see PERS 288, Section 5.3 for a complete description of the operation of the slide fader). The following sequence of events will occur:
(1) approximately 30 seconds before the magazine change is due, a preprogrammed distance count value will cue the computer to output a warning message to the VDU ("change to slide magazine \#x in 30 seconds"). At the same time, the buzzer (bell) on the VDU will sound at approximately halfsecond intervals until the operator acknowledges that he has noted the message by keying in a code;
(2) at the pre-programmed distance count, the last slide will be inserted into the projector gate. The light fader will be activated, and the brightness of the projector lamp will increase. As slide 80 is a dummy stimulus, i.e. opaque, it is not visible to the driver. However, the slide code reader will function normally, and when the lamp reaches a certain brightness, a pulse from comparator C 1 will instruct the computer to read the slide code (the reader is referred to PERS 288, Fig. 3 for an explanation of terms used here). If the expected code is read, the sequence will continue as described below: otherwise the slide change malfunction subroutine is called;
(3) as soon as the expected slide code (no. 80) is read, the computer must output a pulse to the "set" terminal of latch L2, and must simultaneously send a message to the VDU ("change to slide magazine \# x "). The latch prevents the projector lamp from being reset by an internal pulse from the lamp fader. The computer must also halt all normal data logging operations except the monitoring of vehicle velocity which is required for the output of the steering demand and road gradient. Distance pulses must be ignored as well as the pulse from comparator $C 2$ of the lamp fader;
(4) the operator will now change magazines, making sure that slide no. 80 of the new magazine is in the projector gate. He will then press the "projector reset" switch;
(5) when the projector reset is detected, the computer must recommence counting distance pulses. At the first pulse received, slide no. 1 is inserted into the projector gate by a slide change command pulse;
(6) approximately 1,5 seconds* later, the computer must read the slide code. If the code is not "one", the slide change malfunction subroutine is called;
(7) if the correct slide code is read, the computer must extinguish the projector lamp by outputting a pulse to the "reset" terminal of latch L2. At the same time, normal data logging operations are recommended.

NB: to provide a record of events, real times and codes referring to points (3), (5) and (7) above must be stored as data.

5. CONTROL OF EVENTS FROM DISTANCE COUNTS

As explained in Sections 3.4.1 and 5.1 in PERS 288, all computer-controlled events which are not contingent upon driver behaviour will be cued by specific distance counts. Since each distance pulse received by the computer represents a displacement of approximately 15 metres, all such events can be related to distances measured from the start of the journey.

A complete list of distance count related events is given in Appendix A. In order to clarify the entries in this list, a more comprehensive description of the first few events will be given here, as well as a description of some events which occur only infrequently.

The column headings are defined as follows:
event number: this is self explanatory and serves as an aid to tabulation;
distance count: the total number of distance pulses received at a given point;
total road sign count: this is the number of road sign slides (numbered sequentially from the beginning of the slide magazine). In this experiment five road sign slide magazines will be used. The slides will be numbered as follows:
Magazine no. 1: 1 to $80 ;$
Magazine no. 2: 1 to 63,$80 ;$
Magazine no. 3: 1 to 78,$80 ;$
Magazine no. 4: 1 to 65,$80 ;$
Magazine no. 5: 1 to 49.
road sign slide code: this is the binary representation of the total road sign count, shifted left, and with the least significant bit set to identify the code as originating from the road sign slide projector (in the risk slides, this bit will always be reset);
stop required: this information is used by the computer as a flag to indicate whether the driver is required to stop so that the physical risk and police siren probability generators may be sampled if necessary;
physical risk probability; this refers to the probability of a risk slide sequence accurring at a particular point. When this probability is stated, the appropriate probability generator must be sampled. If a risk slide sequence is already in operation, the probability generator must not be sampled;

A simple notation is used to identify the six physical risk probability generators (see PERS 288, Section 5.11) for further details:

```
U,H=urban, high p
U,M = urban, medium P
U,L = urban, low p
R,H = rural, high p
R,M = rural, medium p
R,L = rural, low p
```

The entries in Appendix A refer to distance count-related sampling of the probability generators only - driver behaviour can also cause the generators to be sampled.

The actual probability assigned to each generator is a parameter which should be able to be altered by the operator whenever necessary.
other: $\left.\quad\} \begin{array}{l}\text { comments: }\end{array}\right\} \begin{aligned} & \text { physical nature of an event }\end{aligned}$
In order to save space, some words and phrases have been abbreviated, e.g. "risk" means: "sample risk probability generator with the specified probability"; "C2 + 2s" means: "at two seconds after the pulse from comparator C2 has been received"; "start cont." means: "start'continuous' data storage". Other abbreviations include the following:

```
traf. sig. = traffic signal ("robot");
d.s. = dummy stimulus (risk or road sign slides);
s.1. = speed limit;
stop. cont. = stop "continuous" data storage.
```

PERS 288 reference: this entry contains the Section numbers in PERS 288 to which the reader may refer if more information about a particular function is required. As the distance count related events are highly repetitive, reference numbers are given to the first occurrence of an event, or to unusual events only.

5.1 Detailed descriptions of some computer-controlled events

Event No. 1:

This is acommand to commence the main data logging program, and will be typed on the VDU keyboard by the operator when the subject is ready to start. N.B.: this is an amendment to Section 5.7 in PERS 288, as the START switch was previously specified by this function.

Event No. 2:

This is a dumny road sign stimulus (slide number 1) which is not seen by the driver, and which serves as a check on the correct functioning of the projector. Referring to Fig. 3 of PERS 288 (p .20), the counter will have been preset by the operator prior to the start of the journey. Thus only one distance count will be required before comparator $C 1$ outputs a pulse to the computer. NB: the projector will have been pre-loaded with slide no. 1, so that a slide change command pulse is not required. When the computer receives the pulse from $C 1$, it must read the slide code and compare it with the expected code which is stored in memory. If a match occurs, the slide code number and the real time at which the pulse from $C 1$ was received is stored as data. If a mismatch occurs, the slide change malfunction subroutine is called, and real time and a code referring to this event are stored as data. Further information on this subroutine may be found in PERS 288, Section 5.5.

On receipt of the pulse from $C 1$, the computer must also output a pulse to the "set" terminal of latch L2. This prevents the projector lamp from being extinguished when the lamp fader resets itself, and is required because of the close proximity between events 2 and 3. The pulse output by C2 must be ignored by the computer.

Event No. 3:

This is the first speed limit sign ($60 \mathrm{kmh}^{-1}$), and follows almost immediately after the dume slide. The normal "zoom" effect of the lamp fader will not operate for this sign, but the lamp will be extinguished in the normal way, as described in PERS 288, Section 5.3. No physical risk is associated with this sign.

Event No. 4:

This is a road sign ("danger, children") which is initiated after 16 distance pulses have been received. The road sign projector lamp fader is operated in the normal way as described in PERS 288, Section 5.3. No stop is required.

Event No. 5:

In this event the probability generator associated with an urban, medium probability of physical risk is sampled three seconds after the pulse from C2 has been received (i.e. 3 seconds after the driver "passes" the road sign of Event No. 4). If the output of the generator is a one, then a risk slide sequence is initiated by the computer. This is described in greater detail in PERS 288, Section 5.4.

Event No. 6:

This is a red traffic signal and is initiated by the computer upon receipt of the $31 s t$ distance pulse by means of a slide change command pulse followed by a pulse to the "set" terminal of latch L1. As soon as the vehicle stops (according to the criteria stated in PERS 288, Section 5.3.2) a timer is started. If the vehicle does not stop, both the physical risk and police probability generators must be sampled with probabilities as described in PERS 2.8, Section 5.11.

Event No. 7:

This is a green traffic signal which appears $25 s$ after the vehicle has stopped. Note that the light fader will have been held in the "on" position, so that the green signal can be observed. As the projector lamp is on, the computer can read the slide ID approximately 1,5 seconds after the slide change command pulse was output. As the driver gathers speed, the slide fader will operate in the normal way, switching off the projector lamp as the vehicle "passes" the traffic signal.

Event No. 8:

The physical risk probability generator must be sampled as soon as a pulse from comparator 2 is received. This is to simulate the increased risk of a collision in an intersection. The probability assigned to this generator is: urban, low.

The remaining events are very much the same as those described above, and thus only those involving unusual changes in procedure will be described below.

Event No. 49:

Here the risk slide sequence occurs unconditionally, i.e. without any sampling of a probability generator. This is to simulate the danger associated with road works. The risk slide sequence starts three seconds after the computer receives the pulse from comparator C .

Event No. 59:

This is an unguarded level crossing, and is initiated one second after a pulse is received from comparator C2 (i.e. one second after the driver passes the previous road sign). The police probability generator must be sampled when a pulse is received from comparator C1 if the vehicle speed is greater than $20 \mathrm{kmh}^{-1 . *}$ A risk slide sequence is initiated upon receipt of a pulse from C2.

Event No. 65, 66 and 67:

These events occur at the same distance count value (i.e. 672). A signal is sent to the random light generator to initiate a transition from a high stimulus density to a low stimulus density (see PERS 288, Section 5.8). Simultaneously, a change is made from urban to rural probability generators for physical risk only. Road sign \#42 (90kmh-1 speed limit) is advanced, the new speed limit becoming effective upon receipt of a pulse from C2.

Event No. 74:

At distance count 1344 (i.e. approximately 10 km into rural zone no. 1), a change is made from urban to rural probability generators for police. detection only.

Event No. 84:

At distance count 2172 continuous storage of analogue data is stopped. Selective data storage, as discussed in Section 2.1 is commenced.

Event No. 85-87:

At distance count 2366 continuous storage is resumed. A slide change command pulse is sent to the road sign projector at distance count 2383, and the physical risk probability generator is sampled three seconds after a pulse from comparator two has been received. If no, risk sequence results, continuous storage is discontinued 10 seconds after the pulse from comparator two, otherwise continuous sampling continues until 20 seconds* have elapsed after the dummy risk stimulus has been detectedby the computer.

The above sequence is typical of those of the road signs located in noncontinuous storage, rural zones.

Event No. 103 to 105:

Continuous storage of analogue data commences at distance count 3589. A risk slide sequence is initiated at distance count 3606. Twenty seconds after the risk dummy stimulus is detected, continuous storage of analogue data is discontinued.

Event No's. 130 and 131:

At distance count 4572 continuous storage of analogue data is commenced. Sixty seconds later, this is discontinued. This event occurs in a section of the journey that is devoid of environmental stimuli, and is used to obtain baseline data.

At distance count 7350 a message is sent to the operator, via the VDU, informing him of the need to change road sign slide magazines to magazine No. 2 in approximately 30 seconds time. The buzzer on the VDU is sounded at half-second intervals until the operator responds by pressing a specific key or keys. The slide change command is sent to the road sign projector at distance count 7400. Thereafter, the sequence of events is as described in Section 4.3 of this report.

Event No. 263 to 267 :

At distance count 10679 continuous storage of analogue data is commenced, and this continues until after distance count 10756. The storage of analogue data is discontinued 10 seconds after the pulse from comparator C2 is received, unless a risk slide sequence is called in which case storage continues for 20 seconds after the risk dummy stimulus is detected. The reason for this extended section of analogue storage is that a rest will probably occur over this portion of the journey, and it is desirable that detailed physiological data be available.

Event Nos. 307 and 308:

Starting at distance count 12725, a 60-second block of analogue data is stored. This occurs in a region of low activity, and will be used as a baseline from which comparisons withother sections of the journey can be made.

Event No. 316 to 319:

Here a road $s i g n$ (rest, 1 Km) is followed later by a compulsory risk slide sequence.

Event No. 405:

This is a similar sequence to the previous one.

Event No. 411:

At distance count 16644 continuous storage of analogue data is resumed and continues for the duration of urban zone No. 2.

Event No. 416 to 424:

Here road sign slide magazine No. 3 replaces the previous magazine, as described in detail in Section 4.3.

Event No. 427:

At distance count 17472 the probabilities of a driver violation being detected by the police revert to the higher urban values.

Event No. 435 to 437 :

At distance count 18144 a pulse is sent to the random light generator to signal a transition from low to high stimulus density levels. Simultaneously, the risk of physical injury increases to urban values, and the urban, low probability generator is sampled.

Event No. 500 to 502:

At distance count 18816 a pulse is sent to the random light generator to signal a transition from high to low stimulus density. At the same time rural physical risk probabilities become applicable. A road sign (90km-1 speed limit) is displayed, the new speed limit becoming applicable when the pulse from comparator C 2 is detected.

The remaining events are essentially a repetition of those already described, and thus will not be discussed here. The end of the journey requires a more detailed description as correct termination of the program is essential if information is not to be lost or gathered in excess.

At event no. 915 (distance count 36919), a slide change command pulse causes a road sign to be displayed. Simultaneously a message is output to the VDU informing the operator that the end of the journey is to be expected in approximately one minute. At distance count 36940 a "stop-end-of-journey" road sign is displayed. When this sign becomes visible to the driver, he will have approximately 70 metres to stop from a speed of $60 \mathrm{kmh}^{-1}$. It is unlikely that he will stop before distance count 36960 and thus the last data block will be complete. However, it is desirable that analogue data be sampled and stored up to the time that the driver switches off his engine. For this reason, the computer must inform the operator when the vehicle speed reaches zero. The operator will then inform the driver on the intercom to switch off the ignition, and when he does so the operator must instruct the computer to cease data lagging and commence "data compress" operations (described in greater detail in Sections 3 and 6).

6. DATA PRINTOUT

As mentioned in Section 3, summary statistics computed every 224 distance pulses will form the basic data of this study. It is highly desirable that this data be displayed at the end of each day so that any signs of equipment failure not detectable by the computer may be spotted. Since a graphical representation is the most effective means of detecting anomalous data, an "intelligent" X - Y plotter will be used. In order to provide for clarity of representation, the variables to be plotted will be graphed as follows:
(1) physiological data:

SCL
EMG
HR
BR
(2) vehicle data:
speed
rms steering error
rms steering wheel position
(3) "environmental" data:
n random lights, field 1
n randon lights, field 2
n random lights, field 3
n random lights, field 4
n road signs requiring stops
n samples of risk probability generator due to violations
(4) driver behaviour data, group A:
n missed lights, random lights field 1
n missed lights, random lights field 2
n missed lights, random lights field 3
n missed lights, random lights field 4
n spurious responses, random lights
n brake responses
(5) driver behaviour, group B:
average RT to random lights, field 1
average RT to random lights, field 2
average RT to random lights, field 3
average RT to random lights, field 4
average brake RT to road signs requiring stops.
(6) driver behaviour, group C:
cumulative driver "behaviour index".

The following information concerns events which occur with a very low frequency and which, therefore, are best represented in tabular form printed on the teletype:

```
brake RT to emergency stimuli (if any);
number of risk slide sequences;
number of times police siren is activated;
number of stops not associated with a road sign;
real time;
number of projector failures (road signs);
number of projector failures (risk slides).
```

It will be more meaningful to print the data for the above low-frequency events for each of the five zones of the journey. These zones are defined as shown in Tabel 1.

TABEL 1 : HIGH AND LOW STIMULUS DENSITY ZONES

Zone	Number of blocks	Distance count values
urban 1	3	$0-672$
rural 1	78	$672-18144$
urban 2	3	$18144-18816$
rural 2	78	$18816-36288$
urban 3	3	$36288-36960$

The variables to be graphed will, however, be calculated for each block, i.e. 165 points will be plotted.
7. RISK SLIDE CODING

Appendix B contains a list of risk slide numbers and their associated flags. Each risk sequence consists of from one to three risk slides, and is terminated by a dummy stimulus, or an emergency stimulus and dummy stimulus. The probability of an emergency stimulus is proportional to the number of preceding risk stimuli. The probability of an emergency, given that a single risk stimulus has occured, was arbitrarily set to 0,1 ; however, in adjusting the resulting sequence of slides to accommodate them to a slide magazine with a capacity of 80 slides, the conditional probability which results is 0,11 .

The initial slide sequence, which was derived from a random number table, contained a much higher proportion of sequences of length three. This was altered to even out the distribution to the following:

TABLE 2 : DISTRIBUTION OF RISK SEQUENCE LENGTHS

Sequence length	Frequency
1	9
2	8
3	8

Three emergency stimuli occur after sequences of length three, two after sequences of length two, and one emergency occurs after a sequence of only one risk slide.

8. REFERENCES

CONNELL, N.,
DENTON, G.G. and
D.J. BUTTRESS

Computer programme specifications for the study of driver fatigue. CSIR Special Report, PERS 288. National Institute for Personnel Research, 1979.

McRUER, D.T., PETERS, R.A., RINGLAND, R.F., ALLEN, R.W., BLANVELT A.A. and D.H. WEIR STRONG, P.

VENABLES, P.H. and I. MARTIN

Driver performance measurement and analysis system (DPMAS), Task I: Requirements and plans for prototype equipment. DOT HS-801 234, Hawthorne, California: Systems Technology, Inc., 1973.

Biophysical measurements. Beaverton, Oregon: Tektronix Inc., 1970.

A manual of psychophysiological methods. Amsterdam: North-Holland Publishing Company, 1967.

Appendix A : A complete list of computer-controlled events: 1-918

EVENT NO.	distarice COUNT	TOTAL ROAD SIGA COUiTI	ROAD SIGN SLIDE CODE	$\begin{aligned} & \text { STOP } \\ & \text { REQD? } \end{aligned}$	PHYSICAL RISK (i.e. risk slide) PROBABILITY	OTHER	PERS 288 REF.	COMMENTS
25	246	16	00100001	no	-		5.3.1	road sign (pedestrians)
26	-	-		-	U,M	phys risk prob gen	5.35 .45 .11 .1	C2 + 1sec.
27	273	17	00100011	yes		start timer when vehicle stops	5.3.2	stop sign
28	-	18	00100101	-	-	after 25s	5.3 .2	go sign
29	5	-	-	-	U,M	risk	5.35 .45 .11 .1	
30	295	19	00100111	yes	U,	start timer when veh stops	5.3.2	red traffic signal
31	-	20	00101001	no	-	25s after stop, change to this slide		green traffic signal
32	-	$\overline{-}$	0	-	U,L	risk prob. gen.		$\text { C } 2$
33 34 3	319 -	21	00101011	no	-	risk prob gen		school children crossing C2
35	344	22	00101101	yes	-	prob gen		red traffic signal. Start timer when vehicle stops
36	-	23	00101111	no	-	25s after stop, change to this slide		green traffic signal
37 38	362	24	10001	-	U,L	risk prob gen		
38	362	24	00110001	yes	-			$\begin{aligned} & \text { stop sign. Start timer } \\ & \text { when } v \text { stops } \end{aligned}$
39	-	25	00110011	no	U, M	25s after stop		
40	392	- 26	00110101	-	U,M	risk prob gen		C2
42	-	26	-	-	U,M	risk prob gen		${ }^{\text {p2 }}$ pedestrians crossing
43	414	27	00110111	yes	-			red traf sig. Start timer when V stops
44	-	28	00111001	no	-	25s after stop		green traffic signal
45 46	440	29	- 00111	-	U,L	risk prob gen		C2
46	440	29	00111011	no				speed limit $40 \mathrm{kmh}^{-1}$ (from C2)
47	-	-	-	-	U,L	risk prob. gen		C2 +3 S

I VENT ino.	dISTANCE COUNT	TOTAL RCAD SIGAN COLid	ROAD SIGN SLIDE CODE	STOP REQD?	PHYSICAL RISK (i.e. risk slide) PROBABILITY	OTHER	PERS 288 REF.	COMMENTS
$\begin{aligned} & 94 \\ & 95 \end{aligned}$	-	-	-	-	R,L	risk stop continuous		$\mathrm{C} 2$ at C2 plus 10s EXCEPT if risk sequence dummy stimulus plus 20s
96	3072					continuous storage		
97	3089	55	01101111	no	-			danger, trucks
98	-	-	-	-	R, M	risk		$\mathrm{C} 2+1 \mathrm{~s}$
99	-	-	-	-	-	stop continuous		C2 plus 10s EXCEPT risk dummy stimulus plus 20s
100	3506	-	-	-	-	continuous		
101	3523	56	01110001	no	-			resting 1 K
102	-	-	-	-	-	stop continuous		C2 plus 10s EXCEPT dummy stimulus plus 20s
103	3589	-	-	-	-	start continuous		
104	3606	-	-	-	$p=1$	risk	5.45 .11 .1	risk sequence here
105	-	-	-	-	-	stop continuous		stop at d.s. + 20s
106	3706	-	- 0110011	-	-	continuous store		
107	3723	57	01110011	no	-			direction sign
108	3747	58	01110101	no	-			danger, intersection from left
109	-	-	-	-	R,M	risk		$\mathrm{C} 2+1 \mathrm{~s}$
110	-	-	-	-	,	stop continuous		$\begin{aligned} & \text { C2 plus 10s EXCEPT risk: } \\ & \text { ds }+20 \mathrm{~s} \end{aligned}$
111	3799	-	-	-	-	continuous store		
112	3816	59	01110111	no	-			60kmh-1 speed limit from C2
113	-	-	-	-	R,L	risk		$\mid c 2+3 s$
114	-	-	-	-	-	stop continuous		$\begin{aligned} & \mathrm{C} 2+10 \mathrm{~s} \text { EXCEPT risk - d.s. } \\ & +20 \mathrm{~s} \end{aligned}$
115	3857	-	-	-	-	continuous store		
116	3869	60	01111001	no	-			danger children crossing
117	-	-	-	-	R,M	risk		$\mathrm{C} 2+3 \mathrm{~s}$
118	-	-	-	-	-	stop continuous		$\begin{aligned} & \mathrm{C} 2+10 \mathrm{~s} \text { EXCEPT risk - d.s. } \\ & +20 \mathrm{~s} \end{aligned}$

EVENT No.	distance COUNT	TOTAL ROAD SIGN COUNT	ROAD SIGN SLIDE CODE	$\begin{aligned} & \text { STOP } \\ & \text { REQD? } \end{aligned}$	PHYSICAL RISK (i.e. risk slide) PROBABILITY	OTHER	PERS 288 REF.	COMMENTS
179	3897	-	-	-	-	continuous store		
120	3909	61	01111011	yes	-	continuous store		start timer stop sign
121	-	62	01111101	no		25s after stop		go sign. Start timer at C2
122	-	-	-	-	R,M	risk		
123	-	-	-	-		stop continuous		$\begin{aligned} & \text { C2 plus 20s EXCEPT risk - } \\ & \text { d.s. plus 20s } \end{aligned}$
124	4239	-	-	-	-	start continuous		
125	4251	63	01111111	no	-	Start continuous		$90 \mathrm{kmh}-1$ speed limit from C2
126	- 4	-	-	-	-	stop continuous		C2 plus 10s
127	4439	64	-	-	-	start continuous		
128 129	4456	64	10000001	no	-	stop continuous		hotel 3 km C2 plus 10s
130	4572	-	-	-	-	stop start continuous continuous		$\left.\begin{array}{l}\text { C2 plus 10s } \\ \text { start timer }\end{array}\right\}$ 60s recording
131	-	-	-	-	-	stop continuous		stop at 60 s$\}$ when little activity
132	4719	-	-	-	-	start continuous		
133	4736	65	10000011	no	-			60kmh-1 speed limit from C2
134	-	-	-	-	R,L	risk		$\mathrm{C} 2+2 \mathrm{~s}$
135	-	-	-	-	-	stop continuous		$\begin{aligned} & \text { stop at C2 }+10 \text { s EXCEPT risk, } \\ & \text { d.s. }+20 \text { s } \end{aligned}$
136	4751	-	-	-	-	start continuous		
137	4763	66	10000101	no	-			danger crossroads
138	4789	67	10000111	no	-			direction sign
139	-	-	-	-	R,M	risk		$\mathrm{C} 2+3 \mathrm{~s}$
140	-	-	-	-	-	stop continuous		$\begin{aligned} & \mathrm{C} 2+10 \mathrm{~s} \text { EXCEPT risk, d.s. } \\ & +20 \mathrm{~s} \end{aligned}$
141 142	4817	68	100010	-	-	start continuous		
142 143 144	4829	68	${ }_{10001001}^{-}$	no	-	stop continuous		$\begin{aligned} & 90 \mathrm{kmh}^{-1} \text { from C2 } \\ & \mathrm{C} 2+10 \mathrm{~s} \end{aligned}$
144	5246	-	-	-	-	start continuous		
145	5263	69	10001011	no	-			danger, road from left
146 147	-	-	-	-	R,L	risk		$\begin{aligned} & \mathrm{C} 2+2 \mathrm{~s} \\ & \mathrm{C} 2+10 \mathrm{~s} \text { EXCEPT risk: d.s } \end{aligned}$
147	-	-	-	-	-	stop continuous		$\begin{aligned} & \text { C2 + 10s EXCEPT risk: d.s } \\ & +20 \mathrm{~s} \end{aligned}$

EVEMT 180.	distance COUNT	TOTAL ROAD SIGN COUNT	ROAD SIGN SLIDE CODE	$\begin{aligned} & \text { STOP } \\ & \text { REQD? } \end{aligned}$	PHYSICAL RISK (i.e. risk slide) PROBABILITY	OTHER	PERS 288 REF.	COMMENTS
148	5592	-	-	-	-	start continuous		
149	5609	70	10001101	no	-			danger cattle
150	-	-	-	-	R,H	risk		$\mathrm{c} 2+3 \mathrm{~s}$
151	-	-	-	-	,	stop continuous		$\mathrm{C} 2+10 \mathrm{~s} \text { EXCEPT risk. }$ $\mathrm{d} . \mathrm{s} .+20 \mathrm{~s}$
152	5932	-	-	-	-	start continuous		
153	5949	71	10001111	no	-			danger road from right
154	-	-	-	-	R,L	risk		$\mathrm{C} 2+3 \mathrm{~s}$
155	-	-	-	-	,	stop continuous		$\begin{aligned} & \mathrm{C} 2+10 \mathrm{~s} \text { EXCEPT risk, d.s. } \\ & +20 \mathrm{~s} \end{aligned}$
156	6086	-	-	-	-	start continuous		+ 20s
157	6103	72	10010001	no	-			danger cyclists ${ }_{\omega}^{\omega}$
158	-	-	-	-	R,L	risk		$\mathrm{C} 2+1 \mathrm{~s}$ -
159	-	-	-	-	,	stop continuous		$\begin{aligned} & \mathrm{C} 2+10 \mathrm{~s} \text { EXCEPT risk: d.s. } \\ & +20 \mathrm{~s} \end{aligned}$
160	6179	-	-	-	-	start continuous		
161	6196	73	10010011	no	-			$60 \mathrm{kmh}-1$ speed limit from C2
162	-		1001001	-	R,L	risk		$\mathrm{C} 2+3 \mathrm{~s}$
163	-	-	-	-	-	stop continuous		$\begin{aligned} & \mathrm{C} 2+10 \mathrm{~s} \text { EXCEPT risk: d.s. } \\ & +20 \mathrm{~s} \end{aligned}$
164	6211	-	-	-	-	start continuous		
165	6223	74	10010101	no	-			danger roadworks
166	-	-	-	-	R,M	risk		$\mathrm{C} 2+2 \mathrm{~s}$
167	-	-	-	-	-	stop continuous		$\mathrm{C} 2+10 \mathrm{~s}$ EXCEPT risk: d.s.+ COs
168	6277	-	-	-	-	start continuous		
169	6289	75	10010111	no	-			danger trucks
170	-	-	-	-	R,M	risk		$\mathrm{C} 2+3 \mathrm{~s}$
171	-	-	-	-	-	stop continuous		$\begin{aligned} & \mathrm{C} 2+10 \mathrm{~s} \text { EXCEPT risk: d.s.+ } \\ & 20 \mathrm{~s} \end{aligned}$
172	6384	-	-	-	-	start continuous		
173	6396	76	10011001	yes	-	start timer when speed is zero		stop sign

$\begin{aligned} & \text { EVENT } \\ & \text { NO. } \end{aligned}$	distance COUNT	TOTAL ROAD SIGAN COUNT	ROAD SIGN SLIDE CODE	STOP REQD?	PHYSICAL RISK (i.e. risk slide) PROBABILITY	OTHER	PERS 288 REF.	COMMENTS
197	7439	-	-	-	-	start continuous		
198	7456	2	00000101	no	-			60kmh-1 speed limit from c2
199	-	-	-	-	R,L	risk		C2 $2+3 \mathrm{~s}$
200	- 747	-	-	-	R,	stop continuous		C2 + 10s/d.s. + 20s
201	7477	-	-	-	-	start continuous		
202	7489	3	00000111	no	-			danger, road from left
203	7509	4	00001001	no	-			direction sign
204	-	-	-	-	R,M	risk		$\mathrm{C} 2+1 \mathrm{~s}$
205	7537	-	-	-	R,	stop continuous		C2 + 10s/d.s. + 20s
206	7537	$\overline{5}$	-	-	-	start continuous		
208	7549	5	${ }^{00001011}$	no	-	risk		danger children $\mid \mathrm{c} 2+1 \mathrm{~s}$
209	-	-	-	-	R,	stop continuous		$\mathrm{c} 2+10 \mathrm{~s} / \mathrm{d} . \mathrm{s} .+20 \mathrm{~s}$
210	8097	-	-	-	-	start continuous		
211	8109	6	00001101	no	-			$90 \mathrm{kmh}-1$ speed limit from $\mathbf{C 2}$
212	-	-	-	-	-	stop continuous		C2 $2+10$ s
213	8239	$\overline{7}$	-	-	-	start continuous		
214	8256	7	00001111	no	-			direction sign
215 216	-	-	-	-	R,L	risk		$\mathrm{c} 2$
2117	$\overline{8426}$	-	-	-	-	stop continuous start continuous		C2 + 10s/d.s. + 20s
218	8443	8	00010001	no	-			hospital
219	-	-	-	-	-	stop continuous		c2 + 10s
220	8639	-	-	-	-	start continuous		
221	8656	9	00010011	no	-			danger trucks
222	-	-	-	$-$	R, M	risk		$\mathrm{C} 2+3 \mathrm{~s}$
223	-	-	-	-	-	stop continuous		c2 + 10s/d.8. + 20s
224	8919	10	-	-	-	start continuous		
225	${ }_{89}{ }_{-}$	10	${ }^{00010101}$	no	-			
227	9066	-	-	-	-	stop continuous		

$\begin{aligned} & \text { IVERT } \\ & \text { 10. } \end{aligned}$	DISIALICE Con:it	TOTAL ROAD SIGN COUNT	ROAD SIGN SLIDE CODE	$\begin{aligned} & \text { STOP } \\ & \text { REQD? } \end{aligned}$	PHYSICAL RISK (i.e. risk slide) PROBABILITY	OTHER	PERS 288 REF.	COMMENTS
259	10612	-	-	-	-	start continuous		
260	10629	20	00101001	no	-			4
261	-	-	-	-	R,L	risk		$\mathrm{C} 2+3 \mathrm{~s}$
262	-	-	-	-	-	stop continuous		C2 + 10s/d.s. + 20s
263	10679	-	-	-	-	start continuous		
264	10696	21	00101011	no	-			rest, 1 km
265	10756	-	-	no	-			danger, cattle
266	-	-	-	-	R,M	risk		$\mathrm{C} 2+3 \mathrm{~s}$
267	-	-	-	-	-	stop continuous		C2 + 10s/d.s. + 20s
208	10946	-	-	-	-	start continuous		
269	10963	22	00101101	no	-			axle max limit
270.	-	-	-	-	-	stop continuous		$\mathrm{C} 2+10 \mathrm{~s}$
271	10972	2	-	-	-	start continuous		
272	10989	23	00101111	no	L			direction sign
273	-	-	-	-	R,L	risk		$\mathrm{C} 2+1 \mathrm{~s}$
274	-	-	-	-	,	stop continuous		C2 + 10s/d.s. + 20s
275	11359	24	-	-	-	start continuous		
276	11376	24	00110001	no	-			$60 \mathrm{kmh}-1 \mathrm{s.1}$. from C2
277	-	-	-	-	R,L	risk		$\mathrm{C} 2+3 \mathrm{~s}$
278	11457	-	-	-	-	stop continuous		C2 + 10s/d.s. + 20s
279 280	11457 11469	-	-	-	-	start continuous		
280	11469	25	00110011	no	-			danger roadworks
281	-	-	-	-	R,M	risk		$\mathrm{C} 2+2 \mathrm{~s}$ $\mathrm{C} 2+10 \mathrm{~s} / \mathrm{d} . \mathrm{s} .+20 \mathrm{~s}$
282	11484	-	-	-	-	stop continuous start continuous		C2 + 10s/d.s. + 20s
284	11496	26	00110101	no	-			danger road grader
285	-	-	-	-	R,H	risk		$\mathrm{C} 2+1 \mathrm{~s}$
286	-	-	-	-	-	stop continuous		C2 + 10s/d.s. + 20s
287	11551	-	-	-	-	start continuous		
288	11563	27	00110111	no	-			danger trucks
289	-	-	-	-	R,M	risk		$\mathrm{c} 2+1 \mathrm{~s}$
290	-	-	-	-	-	stop continuous		c2 + 10s/d.s. + 20s

EVENT ivs.	DISTANCE COUNT	TOTAL ROAD SIGN COUNT	ROAD SIGN SLIDE CODE	STOP REQD?	PHYSICAL RISK (i.e. risk slide) PROBABILITY	OTHER	PERS 288 REF.	COMMENTS
291	11724	-	-	-	-	start continuous		
292	11736	28	00111001	yes	-	when vehicle stops start timer		stop sign
293	-	29	00111011	no	-	25s after stop		go sign
294	-	-	-	-	R,M	risk		
295	-	-	-	-		stop continuous		C2 + 10s/d.s. + 20s
296	11764	-	-	-	-	start continuous		
297	11776	30	00111101	no	-			$90 \mathrm{kmh}-1$ speed 1 imit from C2
298	-	-	-	-	-	stop continuous		C2 + 10s
299	12139	-	-	-	-	start continuous		
300	121516	31	00111111	no	-			danger, road from left
301	-	-	-	-	R,L	risk		$\mathrm{C} 2+1 \mathrm{~s}$
302	-	-	-	-	,	stop continuous		C2 + 10s/d.s. + 20s
303	12426	-	-	-	-	start continuous		
304	12443	32	01000001	no	-			danger, road from right
305	-	-	-	-	R,L	risk		$\mathrm{C} 2+1 \mathrm{~s}$
306	-	-	-	-	-	stop continuous		$\mathrm{c} 2+10 \mathrm{~s} / \mathrm{d} . \mathrm{s} .+20 \mathrm{~s}$
307	12725	-	-	-	-	start continuous		
308	-	-	-	-	-	after 60s stop cont		little external activity
309	12892	-	-	-	-	start continuous		
310	12909	33	01000011	no	-			hospital 1 K
311	-	-	-	-	-	stop continuous		C2 + 10s
312	12946	-	-	-	-	start continuous		
313	12963	34	01000101	no	-			pedestrian crossing
314 315	-	-	-	-	R,M	risk		$\mathrm{C} 2+2 \mathrm{~s}$
315 316	-	-	-	-	-	stop continuous		C2 + 10s/d.s. + 20s
316 317	13292	-	-	-	-	start continuous		
317 318	13309	35	01000111	no	-			rest 1 K
318 319	13388	-	-	-	$p=1$	risk		compulsary risk sequence
		-	-	-	-	stop continuous	1 ,	Stop at d.s. +20 s
320	13599	-	-	-	-	start continuous		

EVENT NO.	distamce COUNT	TOTAL ROAD SIGN COUNT	ROAD SIGN SLIDE CODE	$\begin{aligned} & \text { STOP } \\ & \text { REQD? } \end{aligned}$	PHYSICAL RISK (i.e. risk slide) PROBABILITY	OTHER	PERS 288 REF.	COMMENTS
321	13616	36	01001001	no	-			60kmh-1 speed limit from C2
322	-	-	-	-	R,L	risk		
323	-	-	-	-	,	stop continuous		C2 + 10s/d.s. + 20s
324	13631	-	-	-	-	start continuous		
325	13643	37	01001011	no				danger roadworks
326	-	-	-	-	R,M	risk		C2
327	-	-	-	-		stop continuous		
328	13684	-	-	-	-	start continuous		
329	13696	38	01001101	no				90kmh-1 speed 1 imit from C2
330	-	-	-	-	-	stop continuous		C2 + 10s
331	14025	-	-	-	-	start continuous		
332 333	14042	39	01001111	no	-			hotel 3K
332 334	14246	-	-	-	-	stop continuous start continuous		C2 + 10s
335	14263	40	01010001	no	-	start		danger cattle
336			-	-	R,M	risk		$\mathrm{C} 2+3 \mathrm{~s}$
337	-	-	-	-	,	stop continuous		C2 + 10s/d.s. + 20s
338	14506	-	-	-	-	start continuous		
339	14523	41	01010011	no	-			60kmh-1 speed limit from C2
340	-	4	-	-	R,L	risk		
341	14576	42	01010101	no				direction sign
342	-	-	-	-	R,M	risk		$\mathrm{C} 2+1 \mathrm{~s}$
343	-	-	-	-	-	stop continuous		C2 + 10s/d.s. + 20s
344	14604	-	-	-	-	start continuous		
345 346	14616	43	01010111	no	-			danger pedestrians
346	-	-	-	-	R,M	risk		$\mathrm{C} 2+2 \mathrm{~s}$
347	-	-	-	-	-	stop continuous		c2 + 10s/d.s. + 20s
348	14684	-	-	-	-	start continuous		
349	14696	44	01011001	no	-			$60 \mathrm{kmh}-1$
350	-	-	-	-	-	stop continuous		c2 + 10s
351	14724	-		-	-	start continuous		
352	14736	45	01011011	yes	-	start timer when vehicle stops		stop sign

EVENT NO.	DISTANCE COUNT	TOTAL ROAD SIGM COUNT	ROAD SIGN SLIDE CODE	$\begin{aligned} & \text { STOP } \\ & \text { REQD? } \end{aligned}$	PHYSICAL RISK (i.e. risk slide) PROBABILITY	OTHER	PERS 288 REF.	COMMENTS
386	15696	-	-	-	-	start continuous		
387	15703	55	01101111	no	-			danger no overtaking
388		-	-110111	-	R,L	risk		$\mathbf{C 2}+28$
389	-	-	-	-	,	stop continuous		
390	15839	-	-	-	-	start contimuous		
391	15856	56	01110001	no	-			60kmh-1 speed limit from C2
392	-	-		-	R,L	risk		$\mathbf{C 2}+3 \mathrm{~s}$
393	-	-	-	-	R,L	stop continuous		
394	15951	-	-	-	-	start continuous		
395	15963	57	01110011	yes	-	start timer when vehicle stops		stop sign
396	-	58	01110101	no	-	change slide at $25 s$		go sign
397	-	5	(110101	-	R,M	rîsk		
398	-	-	-	-		stop continuous		$\mathrm{C} 2+10 \mathrm{~s} / \mathrm{d} . \mathrm{s} .+20 \mathrm{~s}$
399	16004	-	-	-	-	start continuous		
400	16016	59	01110111	no	-			90kmh-1 speed limit from C2
401	-			-	-	stop continuous		$\mathrm{C} 2+108$
402	16212	-	-	-	-	start continuous		
403	16229	60	01111001	no	-			$90 \mathrm{kmh}-1 \text { from C2 }$
404	- $\overline{16319}$	-	-	-	-	start continuous		90konh-1 from C2
405	16319 16336	-	- 01111011	-	-	start continuous		
406 407	16336	61	01111011	no	-			rest 1Km
408	-	-	-	-	-			
409	16415	-	-	-	$\underline{p}=1$	risk	5.45 .11 .1	-
410	-	-	$\cdots \cdots$	-	p	stop continuous		risk sequence here at d.s. $+20 \mathrm{~s}$
411	16644	-	-	-	-			continuous store, from now on
412 413	16729 -	62	01111111	no	R,M	risk		road sign (pedestrians) $\mathrm{C} 2+3 \mathrm{sec}$

$\begin{aligned} & \text { EVENT } \\ & \text { Ho. } \end{aligned}$	DIStANCE COUNT	total road SIGN COUNT	ROAD SIGN SLIDE CODE	$\begin{aligned} & \text { STOP } \\ & \text { REQD? } \end{aligned}$	PHYSICAL RISK (i.e. risk slide) PROBABILITY	OTHER	PERS 288 REF.	COMMENTS
414 415 416	17176 17283	63 -	01111111 -	no	R,L	VDU		\triangle no overtaking C2 +2 s Message to VDU: "change to magazine \#3 in 30 seconds" Buzzer
417	17333	80	10100001 -	no	-	dummy stimulus read code		Read at C 1 and latch fader "on"
419	-	-	-	-	-	VDU		Message to VDU: "change to magazine \# $3^{" 1}$
420 421	-	-	-	-	-	stop logging projector reset S / W		Ignore dist pulses and decrement dist count: Stop logging E presses proj reset S / W.
421 422	-	1	00000011	no	-	projector reset S/W duminy stimulus		Start counting dist. pulses Change slide at first distance pulse received
423	-	-	-	-	-	read slide code		read at d.s. + 1 sec .
424 425	$17 \overline{4} 56$	$\overline{2}$	- 00000101	-	-	restart logging		Restart if slide I.D. O.K. \triangle trucks
426	17456	2	00000101		R, ${ }_{\text {- }}$			Δ trucks
427	17472					$\left.\right\|_{\text {R }-U \text { trans. police }} ^{\text {risk }}$		
428	17596	3	00000111	no	-			police 1 km
429	17709	4		no	-			danger road from right
430 431	17869	$\overline{5}$	- 00001011	-	R,L	risk		$\left\lvert\, \begin{aligned} & \mathrm{C} 2+1 \mathrm{~s} \\ & \text { danoer cat } 1 \mathrm{e} \end{aligned}\right.$
432	17869	5	- 000011	no	R,M	risk		
433	17923	6	00001101	no	-			distance sign
434	18128	7	00001111	no				$60 \mathrm{kmh}-1$ speed limit from C2
435	18144	-	-	-	-	R-U transition. physical risk		
436	-	-	-	-	-	$\begin{aligned} & \text { low - high trans., } \\ & \text { R.L.G. } \end{aligned}$	5.8	random light generator

EVENT NO.	DISTANCE COUNT	TOTAL ROAD SIGM COUNT	ROAD SIGN SLIDE CODE	$\begin{aligned} & \text { STOP } \\ & \text { REQD? } \end{aligned}$	PHYSICAL RISK (i.e. risk slide) PROBABILITY	OTHER	PERS 288 REF.	COMMENTS
437	-	-	-	-	U,L	phys risk prob.gen		
438	18147	8	00010001	no	U,L	phys. risk prob.gen		60kmh-1
439	18160	9	00010011	no				danger children
440	-	-	-	-	U,M	risk (physical)		$\mathrm{C} 2+3 \mathrm{~s}$
441	18175	10	00010101	yes	,	start timer when vehi- cle stops		red traffic signal
442	-	11	00010111	no	-	Change to this slide after 25s		green traffic signal
443	- 18192	-	00011	-	U,L	risk (physical)		C2
444	18192	12	00011001	no				
445	18215 -	13	00011011	no		risk (physi		green traffic signal C2
447	18247	14	00011101	-	U,L	risk (physical)		green traffic signal
448		-	-	-	U,L	risk		
449	18271	15	00011111	yes	-	start timer when vehicle stops		stop sign
450	-	16	00100001	-	-	25s after stop, change to this slide		go sign
451	-	-	-	-	U,M	risk prob gev		risk pro gen sampled at C2
452	18293	17	0010001	no	-			hospital sign
453	18310	18	00100101	yes	-			red traffic signal. Start timer when vhicle stops.
454	-	19	00100111	-	-	$25 s$ after stop change to this slide		green traffic signal
455	-		-		U,L	risk prob gen		risk prob gen sampled at C2
456	18335	20	00101001	no	-			Slippery road
457	-	21	-	-	U,L	risk		$\mathrm{C} 2+2 \mathrm{~s}$
458	18365	21	00101011	no	U,L	risk prob gen		green traffic signal C2
460	18390	22	00101101	no				pedestrian crossing
461	18417	23	-	-	U,M	risk prob gen		c2 +1 s
462	18417	23	00101111	yes	-			stop sign. Start timer when vehicle stops

EVENT Ho.	DISTANCE COUNT	TOTAL ROAD SIGM COUNT	ROAD SIGN SLIDE CODE	STOP REQD?	PHYSICAL RISK (i.e. risk slide) PROBABILITY	OTHER	PERS 288 REF.	COMMENTS
463	-	24	00110001	-	-	$25 s$ after stop change		$g 0$ sign
464	-	-	-	-	U,M	risk prob gen		C2
465	18439	25	00110011	yes				red traffic signal. Start
466	-	26	00110101	no	-	$25 s$ after stop change to this slide		timer when vehicle stops green traffic signal
467	-	-	0	-	U,L	risk prob gen		
468	18463	27	00110111	no	-			school children crossing
469		2	-	-	U,M	risk prob gen		C2
470	18488	28	00111001	yes				red traffic signal. Start timer when vehicle stops
471	-	29	00111011	no	-	25s after stop, change to this slide		green traffic signal
472	- 1850	$\overline{3}$			U,L	risk prob. gen		
473	18506	30	00111101	yes	$\underline{\sim}$			stop sign. Start timer when vehicle stops
474	-	31	00111111	no				go sign
475	18536	32	-0100001	-	U,M	risk prob gen		C2
477	18536	32	01000001	no	U,M	risk prob gen		ledestrian crossing
478	18558	33	01000011	yes	-			red traf sig. Start timer when vehicle stops.
479	-	34	01000101	no		25s after stop		green traffic signal
488	18584	-	- 01000111	-	U,L	risk prob gen		C2
482	18584	35	01000111	no	U, L^{-}	risk prob gen		
483	18597	36	01001001	no	,			danger road works
484	-	-	-	-	$p=1$	risk prob gen		$\mathrm{C2}+3 \mathrm{~s}$
485	18621 -	37	${ }^{01001011}$	no	$\overline{\mathrm{U}, \mathrm{M}}$	risk prob gen		${ }^{\text {green }}$ robot
487	18645	38	01001101	no	-			speed limit 60 from $\mathbf{C 2}$
488	18675	39	01001111	yes	-	start timer when speed of V zero		stop sign. Start timer when kehicle stnne

EVENT NO.	DISTAHCE COUNT	TOTAL ROAD SIGM COUNT	ROAD SIGN SLIDE CODE	$\begin{aligned} & \text { STOP } \\ & \text { REQD? } \end{aligned}$	PHYSICAL RISK (i.e. risk slide) PROBABILITY	OTHER	PERS 288 REF.	COMMENTS
489	-	40	01010001	no	-			go sign
490	-		0101000	-	U,M			
491	18700	41	01010011	no				green traffic signal
492	-	-	-	-	U,L			
493	18728	42	01010101	no				unguarded level crossing
494	-	43	01010111	yes	(U,M)	change to this slide at pulse from C2		level crossing 2 tracks
495	18753	44	01011001	yes	-	Start timer when veh. stops		Stop sign
496	-	45	01011011	no	-	25s after stop		go sign
497	-7875	-	-	-	U,M	risk prob gen		c2
498	18775	46	01011101	no	-			direction sign
499 500	18788	47	01011111	no	-			Durban x km random light generator
500	18816	-	-	-	-	high-to-low stimulus density transition		random light generator
501 502	-	48	01100001	no	(- ${ }^{\text {(}}$	Urban to Rural tran-		90kmh-1 speed limit from C2
					(R)	Urban to Rural transition. Phys risk		
503	19180	49	01100011	no	-			Durban 529 km
504	19363	50	01100101	no				$40 \mathrm{kmh}-1$ speed limit from C2
505 506	19402	-	01100111	-	$\stackrel{\text { R-S }}{\text { - }}$	risk prob gen.		$\left\lvert\, \begin{aligned} & \mathrm{c} 2+3 \mathrm{~s} \\ & \text { danger roadworks } \end{aligned}\right.$
507	,	5	-	-	R,M	risk prob gen.		$\mathrm{C} 2+2 \mathrm{~s}$
508	19445	52	01101001	no	-			$90 \mathrm{kmh}-1$ speed limit from C 2
509	19488	-	-	-	-	U-R transition police		danger road works
510	19628	53	01101011	no		detection		
511	-	-	-	-	R,M	risk prob gen		C2 +2 s
512	19633	54	01101101	no	,			danger no overtaking
513	20201	55	- ${ }^{-111}$	-	R,L	risk prob gain		C2
514 515	20201	55	01101111	no	-			$60 \mathrm{kmh}-1$ speed limit from C2
515 516	20238	-	01110001	-	R,L			$\left\lvert\, \begin{gathered} \mathrm{C} 2+2 \mathrm{~s} \\ \quad \text { crossroads } \end{gathered}\right.$
517	-	-	-	-	R,M			C2

EVENT NO.	dIStance COUNT	TOTAL ROAD SIGN COUNT	ROAD SIGN Slide code	STOP REQD?	PHYSICAL RISK (i.e. risk slide) PROBABILITY	OTHER	PERS 288 REF.	COMMENTS
518	20248	-	-	-	-	start continuous		
519	20260	57	01110011	no				$90 \mathrm{kmh}-1 \mathrm{s.1}$. from C 2
520	-	-	-	-	R,L	risk		
521	-	-	-	-		stop continuous		C2 + 10s/d.s. + 20s
522	-	58	01110101			start continuous		
523 524	20560	59	01110111	no				danger road from left
524 525	-	-	-	-	R,L	risk stop continuous store		$\mathrm{c} 2+3 \mathrm{~s}$
525	-	-	-	-	-	stop continuous store		stop continuous store at C- plus 10s OR if risk sequence is in operation, at dumm slide plus 208
526	20843	$\overline{60}$	01111001	-	-	high rates cont		
527 528	20860	60	20111001	no	-	stop continuous store		Police 1 K at C2 plus 10s
529	21172	-	-	-	-	low sampling rates continuous store high sampling rates		
530	21189	61	01111011	no				danger road from left
531 532	-	-	-	-	R,L	risk		C2 2 plus 10s EXCEPT if
	-	-	-	-		stop continuous		at C2 plus 10s EXCEPT if risk sequence dummy stimulus plus 20s
533	21216	-	-111101	-	-	continuous storage		
534	21233	62	01111101	no				danger trucks
535	-	-	-	-	R,M	risk		$\mathrm{C} 2+1 \mathrm{~s}$
536	-	-	-	-	R,	stop continuous		C2 plus 10s EXCEPT riskdummy stimulus plus 20s
537	21650	-	-	-	-	continuous		
538 539	21667	63	01111111	no	-	stop continuous		resting 1 K
539	-	-	-			stop continuous		C2 plus 10s EXCEPT dummy stimulus plus 20s
540	21733 21750					start continuous risk		risk sequence here
542	21750	-	-	-	$p=1$	Stop continuous		stop at d.s. + 20s

$\begin{aligned} & \text { EVENT } \\ & \text { NO. } \end{aligned}$	distance COUNT	TOTAL ROAD SIGN COUNT	ROAD SIGN SLIDE CODE	STOP REQD?	PHYSICAI RISK (i.e. risk slide) PROBABILITY	OTHER	PERS 288 REF.	COMMENTS
543	21850	-	-	-	-	continuous store		
544	21867	64	10000001	no	-			direction sign
545	21891	65	10000011	no				danger intersection from left
546	-	-	-	-	R,M	risk		C2 + 1s
547	-	-	-	-	R,	stop continuous		C2 plus 10s EXCEPT risk: $\mathrm{ds}+20 \mathrm{~s}$
548	-	-	-	-	-	continuous store		
549	21960	66	10000101	no				$60 \mathrm{kmh}{ }^{-1}$ speed limit from C 2
550	-	-	-		R,L	risk		
551	-	-	-	-	,	stop continuous		$\begin{aligned} & \mathrm{C} 2+10 \mathrm{~s} \text { EXCEPT risk - d.s. } \\ & +20 \mathrm{~s} \end{aligned}$
552	22001	-	-	-	-	continuous store		
553	22013	67	10000111	no	-			danger children crossing
554	-	-	. -	-	R,M	risk		C2 $2+3 \mathrm{~s}$
555	-	-	-	-	-	stop continuous		$\begin{aligned} & \mathrm{C} 2+10 \mathrm{~s} \text { EXCEPT risk - d.s. } \\ & +20 \mathrm{~s} \end{aligned}$
556	22041	-	-	-	-	continuous store		
557	22053	68	10001001	yes				start timer stop sign
558	-	69	10001011	no		25s after stop		go sign. Start timer at C2
559	-	-	-	-	R,M	risk		
560	-	-	-	-	-	stop continuous		C2 plus 20s EXCEPT risk d.s. +20 s
561	22383	-	-	-	-	start continuous		
562 563	22395	70	10001101	no				$90 \mathrm{kmh}^{-1}$ speed limit from C2
563	${ }_{22583}$	-	-	-	-	stop continuous start continuous		C2 plus 10s
565	22600	71	10001111	no				Hotel 3 km
566	-	-	-	-	-	stop continuous		C2 plus 10s
567	22716	-	-	-	-	start continuous		Start timer 60s recording
568	-	-	-	-	-	stop continuous	I	Stop at 60s when little act.
569 570	22863 22880	$\overline{72}$	10010001	-	-	start continuous		$60 \mathrm{kmh}-1$ speed limit from C2

EVENT NO.	DISTANCE COUNT	TOTAL ROAD SIGN COUNT	ROAD SIGN SLIDE CODE	STOP REQD?	PHYSICAL RISK (i.e. risk slide) PROBABILITY	OTHER	PERS 288 REF.	COMMENTS
571	-	-	-	-	R,L	risk		
572	-	-	-	-	,	stop continuous		Stop at C2 + 10s EXCEPT risk d.s. + 20s
573	22895	-	-	-	-	start continuous		
574	22907	73	10010011	no				danger crossroads
575	22933	74	10010101	no				direction sign
576	-	-	-	-	R,M	risk		$\mathrm{C} 2+3 \mathrm{~s}$
577	-	-	-	-		stop continuous		$\begin{aligned} & \mathrm{C} 2+10 \mathrm{~s} \text { EXCEPT risk: d.s. } \\ & +20 \mathrm{~s} \end{aligned}$
578	22961	-	-	-		start continuous		
579	22973	75	10010111	no				$90 \mathrm{kmh}-1$ from C2
580 581	23390		-	-		stop continuous		$\mathrm{C} 2+10 \mathrm{~s}$
581 582	23390 23407	76	10011001	-		start continuous		danger, road from left
583	23407	76	10011001	no	R,L	risk		$\mathrm{C} 2+2 \mathrm{~s}$
584	-	-	-			stop continuous		$\begin{aligned} & \mathrm{c} 2+10 \mathrm{~s} \text { EXCEPT risks: d.s. } \\ & +20 \mathrm{~s} \end{aligned}$
585	23736					start continuous		
586	23753	77	10011011	no				danger cattle
587	-	-	-	-	R,H	risk		$\mathrm{C} 2+3 \mathrm{~s}$
588	-	-	-	-	-	stop continuous		$\begin{aligned} & \mathrm{C} 2+10 \mathrm{~s} \text { EXCEPT risk: d.s. } \\ & +20 \mathrm{~s} \end{aligned}$
589	24076	-	-	-	-	start continuous		
590	24093	78	10011101	no	-			\#danger road from right
591	-	-	-	-	R,L	risk		$\mathrm{c} 2+3 \mathrm{~s}$
592 593	24180	-	-	-	-	stop continuous VDU		$\mathrm{c} 2+10 \mathrm{~s} / \mathrm{d} . \mathrm{s} .+20 \mathrm{~s}$
593	24180	-	-	-	-	VDU		Message: "Change to magazine 4 in 30s." Buzzer.
594	24225	80	10100001	no	-	dummy stimulus		Read at C1. Latch fader "on"
595 596	-	-		-	-			Read at C1. Latch fader "on" Message: "Change to magazine
597	-	-	-	-	-	stop logging		number $4^{\prime \prime}$ Ignore distance pulses and decrement dist. count. Stop logging data.

EVENT NO.	DISTANCE COUNT	TOTAL ROAD SIGA COUNT	ROAD SIGN SLIDE CODE	STOP REQD?	PHYSICAL RISK (i.e. risk slide) PROBABILITY	OTHER	PERS 288 REF.	COMMENTS
624	24580	7	00001111	no				$90 \mathrm{kmh}-1$ speed limit from C 2
625	-	-	-	-		stop continuous		$\mathrm{C} 2+10 \mathrm{~s}$
626	25210	-	-	-		start continuous		
627	25227	8	00010001	no				danger road from left
628	-	-	,	-	R,L	risk		$\mathrm{C} 2+1 \mathrm{~s}$
629	-	-	-	-	,	stop continuous		$\begin{aligned} & \mathrm{C2}+10 \mathrm{~s} \text { EXCEPT risk: d.s. } \\ & +20 \mathrm{~s} \end{aligned}$
630	25370	-	-	-	-	start continuous		
631	25387	9	00010011	no	-			60kmh-1 speed limit from C 2
632	-	-	-	-	R,L	risk		$\mathrm{C} 2+3 \mathrm{~s}$
633 634	25621	-	-	-	,	stop continuous		$\mathrm{C} 2+10 \mathrm{~s} / \mathrm{d} . \mathrm{s} .+208$
634 635	25621	-	- 0^{-}	-	-	start continuous		
635 636	25633	10	00010101	no				danger road from left direction sign
637	-	-		-	R,M	risk		$\mathrm{c} 2+1 \mathrm{~s}$
638	-	-	-	-	-	stop continuous		C2 + 10s/d.s. + 20s
639	25681	-	-	-	-	start continuous		
640	25693	12	00011001	no				danger children
641	-	-	-	-	R,H	risk		$\mathrm{C} 2+1 \mathrm{~s}$
642	-	-	-	-	-	stop continuous		C2 + 10s/d.s. + 20s
643	26241	13	00011011	-		start continuous		
645	-	-	0001	-		stop continuous		$\mathrm{C} 2+10 \mathrm{~s}$
646	26383	-	-	-		start continuous		
647	26400	14	00011101	no				direction sign
648	-	-	-	-	R,L	risk		
649	-	-	-	-	-	stop continuous		C2 + 10s/d.s. + 20s
650	26570	-	0	-	-	start continuous		
651 652	26587	15	00011111	no	-	stop cdatinuo		hospital
653	26783	-	-	-	-	stop continuous start continuous		
654	26800	16	00100001	no				danger trucks
655 656	-	-	-	-	R,M	risk stop continuous		C2 + 3s $\mathrm{C} 2+10 \mathrm{~s} / \mathrm{d} . \mathrm{s} .+20 \mathrm{~s}$
						stop continuous		

$\begin{aligned} & \text { EVENT } \\ & \text { NO. } \end{aligned}$	DISTANCE COUNT	TOTAL ROAD SIGN COUNT	ROAD SIGN SLIDE CODE	$\begin{aligned} & \text { STOP } \\ & \text { REQD? } \end{aligned}$	PHYSICAL RISK (i.e. risk slide) PROBABILITY	OTHER	PERS 288 REF.	COMMENTS
657	27063	-	-		-	start continuous		
658	27080	17	00100011	no		staxt continuous		Rest 1K
659	-	-	0010001	п		stop continuous		C2
660	27210	-	-	-		start continuous		
661	27227	18	00100101	no				Petrol 3K
662	-	-	00100101			stop continuous		C2 + 10s
663	27303	-	-	-		start continuous		
664	27320	19	00100111	no				danger pedestrians
665	-	1	0010011		R,M	risk		
666 667	- 27376	-	-	-	R,	stop continuous		$\mathrm{C} 2+10 \mathrm{~s} / \mathrm{d} . \mathrm{s} .+10 \mathrm{~s}$
668	27393	20	$0010 \overline{1001}$	-	-	start continuous		$60 \mathrm{kmh}-1$ speed limit from C2 ${ }^{\sim}$
669	-	-	-	-	R,L	risk		$\mathrm{C} 2+1 \mathrm{~s}$
670	-	-	-	-	-	stop continuous		C2 + 10s/d.s. + 20s
671	27408	21	-	-	-	start continuous		
672 673	27420	21	${ }_{\text {O0101011 }}$	no		risk		danger roadworks $\mathrm{C} 2+2 \mathrm{~s}$
674	-	-	-	-		stop continuous		$\mathrm{C} 2+10 \mathrm{~s} / \mathrm{d} . \mathrm{s} .+20 \mathrm{~s}$
675	27435	-	-		-	start continuous		$90 \mathrm{kmh}-1$ speed limit from ${ }^{2}$
676 677	27447	22	00101101	no				
678	28356	-	-	-		stop continuous start continuous		C2 + 10s
679	28373	23	00101111					danger 2-way traffic :
680	-	-	-	-		stop continuous		$\mathrm{C} 2+10 \mathrm{~s}$
681	28756	-	- 000	-		start continuous		
682 683	28773	24	00110001	no		risk		danger road from left $\mathrm{c} 2+3 \mathrm{~s}$
684	-	-	-	-	R,L	risk continuous		$\mathrm{c} 2+10 \mathrm{~s} / \mathrm{d} . \mathrm{s} .+20 \mathrm{~s}$
685	28823	-	-	-	-	start continuous		
686		25	00110011					Rest 1 K
687	-	-	-	-	-	stop continuous.		$\mathrm{C} 2+10 \mathrm{~s}$
688	28850	26	00110101	no		start continuous		danger cattle
689	-	-	-	-	R,M	risk		
690	-	-	-	-	-	stop continuous		c2 + 10s/d.s. + 20s

Unt	disiance count	TOTAL ROAD SIGN COUNT	ROAD SIGN SLIDE CODE	$\begin{aligned} & \text { STOP } \\ & \text { REQD? } \end{aligned}$	PHYSICAL RISK (i.e. risk slide) PROBABILITY	OTHER	PERS 288 REF.	COMMENTS
691	29090					start continuous		
692	29107	27	00110111	no				axle max. limit
693	-	-	-	-		stop continuous		C2 + 10s
694	29116	-	-	-		start continuous		
695	29133	28	00111001	no				direction sign
696	-	-	-	-	R,L	risk		$\mathrm{C} 2+1 \mathrm{~s}$
697	-	-	-	-	-	stop continuous		C2 + 10s/d.s. + 20s
698	29503	-	-	-	-	start continuous		
699	29520	29	00111011	no				$60 \mathrm{kmh}-1 \mathrm{~s} .1$. from C 2
700	-	-	-	-	R,L	risk		$\mathrm{C} 2+3 \mathrm{~s}$
701	9601	-	-	-		stop continuous		C2 + 10s/d.s. + 20s
703	29613	30	00111101	-		start continuous		danger trucks
704	-	-	-	-	R,M	risk		$\mathrm{C} 2+1 \mathrm{~s}$
705	-	-	-	-	,	stop continuous		C2 + 10s/d.s. + 20s
706	29863	-	-	-		start continuous		
707	29880	31	00111111	yes		when vehicle stops, start timer		stop sign
708	-	32	01000001	no		25s after stop		go sign
709	-	-	-		R,M	risk		
710	-	-	-	-	-	stop continuous		C2 + 10s/d.s. +20 s
711	29908	-	-	-	-	start continuous		
712	29920	33	01000011	no				$90 \mathrm{kmh}-1$ speed limit from C2
713	-	-	-	-		stop continuous		C2 + 10s
714 715	30283 30300	34	- 01000101	no		start continuous		
716	30300	34 -	01000101	no	R,L	risk		danger road from left $C 2+1 s$
717	-	-	-	-	-	stop continuous		C2 + 10s/d.s. + 20s
718	30570	-	-	-	-	start continuous		
719	30587	35	01000111	no				danger road from right
720	-	-	-	-	R,L	risk		$\mathrm{C} 2+1 \mathrm{~s}$ d ${ }^{\text {c }}$
721	-	-	-	-	-	stop continuous		
722	30869	-	-	-	-	start continuous start timer		60s recording when very \{little external activity

EVENT NO.	distance COUNT	TOTAL ROAD SIGN COUNT	ROAD SIGN SLIDE CODE	$\begin{aligned} & \text { STOP } \\ & \text { REQD? } \end{aligned}$	PHYSICAL RISK (i.e. risk slide) PROBABILITY	OTHER	PERS 288 REF.	COMMENTS
724	31036	-	-			start continuous		
725	31053	36	01001001	no		start continuous		hospital 1K
726	-		,	-		stop continuous		$\mathrm{C} 2+10 \mathrm{~s}$
727	31090	-		-		start continuous		
728	31107	37	01001011	no				Pedestrian crossing
729	-	-	,	no	R,M	risk		C2 + 2 s
730	-	-	-	-		stop continuous		C2 + 10s/d.s. +20 s
731	31436	-	-	-	-	start continuous		
732	31453	38	01001101	no				Rest 1R
733	31520	-	-100101	-	R,L	risk		
734	-	-	-	-	-	stop continuous		Stop record. at 31525 EXCEPT if o/p of prob. given is 1 ; then stop at d.s. +20 s
735	31743	-	0100	-	-	start continuous		
736 737	31760	39	0.1001111	no	R,L	risk		$60 \mathrm{kmh}-1$ speed limit from C 2 C 2
738	-	-	-	-	R,L	stop continuous		$\mathrm{C} 2+10 \mathrm{~s} / \mathrm{d} . \mathrm{s} .+20 \mathrm{~s}$
739	31775	-	-	-	-	start continuous		
740	31787	40	01010001	no				danger road works
741	-	-	-	-	R,M	risk		C2
742 743	- ${ }^{-}$	-		-	-	stop continuous		
743 744	31828 31840	41	01010011	-		start continuous		danger cattle
745	-	-	-1010011	-	R,M	risk		$\mathrm{c} 2+3 \mathrm{~s}$
746	-	-	-	-	,	stop continuous		$\mathrm{C} 2+10 \mathrm{~s} / \mathrm{d} . \mathrm{s} .+20 \mathrm{~s}$
747	32650	42	01010101	-	-	start continuous		60kmh-1 speed limit from C2
749	32667	42	01010101	no	R,L	risk		
750	32720	43	01010111	no				direction sign
751	-	-	-	-	R,M	risk		$\mathrm{c} 2+3 \mathrm{~s}$
752	-	-	-	-	-	stop continuous		$\mathrm{C} 2+20 \mathrm{~s} / \mathrm{d} . \mathrm{s} .+20 \mathrm{~s}$
753	32650	44	01011001	-	-	start continuous.		60kmh-1 speed limit from C2
754	32667	44	01011001					

I VENT NO.	DISTANCE COUNT	TOTAL ROAD SIGN COUNT	ROAD SIGN SLIDE CODE	$\begin{aligned} & \text { STOP } \\ & \text { REQD? } \end{aligned}$	PHYSICAL RISK (i.e. risk slide) PROBABILITY	OTHER	PERS 288 REF.	COMMENTS
755	-	-	-	-	R,L	risk		C2
756	32720	45	01011011	no	R,L	risk		direction sign
757	-	-	-	-	R,M	risk		$\mathrm{C} 2+1 \mathrm{~s}$
758	-	-	-	-	,	stop continuous		$\mathrm{C} 2+10 \mathrm{~s} / \mathrm{d} . \mathrm{s} .+20 \mathrm{~s}$
759	32748	-	-	-	-	start continuous		
760	32760	46	01011101	no				danger pedestrians
761	-	-	-	-	R,M	risk		$\mathrm{C} 2+2 \mathrm{~s}$
762	-	-	-	-	,	stop continuous		C2 + 10s/d.s. + 20s
763	32828	-		-	-	start continuous		
764	32840	47	01011111	no				$60 \mathrm{kmh}-1$
765		-		-	-	stop continuous		C2 + 10s
766	32868	-	-	-	-	start continuous		- ~
767	32880	48	01100001	yes		start timer when veh stops		stop sign
768	-	49	01100011	no		25s after stop		go sign
769	-		0110001	,	R,M	risk		$\mathrm{C} 2+3 \mathrm{~s}$
770	-	-	-	-	-	stop continuous		$\mathrm{C} 2+10 \mathrm{~s} / \mathrm{d} . \mathrm{s} .+20 \mathrm{~s}$
771	32921	-	-	-	-	start continuous		
772	32933	50	01100101	no				$90 \mathrm{kmh}-1 \mathrm{~s} .1$. from C2
773	-	-	-	-	-	stop continuous		$\mathrm{C} 2+10 s$
774	33063	-	-	-	-	start continuous		
775	33080	51	01100111	no				danger slippery road
776	-	-		-	R,L	risk		$\mathrm{C} 2+3 \mathrm{~s}$
777	-	-	-	-	-	stop continuous		$\mathrm{C} 2+10 \mathrm{~s} / \mathrm{d} . \mathrm{s} .+20 \mathrm{~s}$
778	33130	-	-	-	-	start continuous		
779	33147	52	01101001	no				danger trucks
780	-	-	-	-	R,M	risk		C2
781	-	-	-	-	-	stop continuous		C2 + 10s/d.s. +20 s
782	33230	-	-	-	-	start continuous		
783	33247	53	01101011	no	-			danger road from right
784	-	-	-	-	R,L	risk	!	C2
785	-	-	-	-	-	stop continuous		
786	33310	-		-	-	start continuous		
787	33327	54	01101101	no			1	$60 \mathrm{kmh}-1$ speed limit from C2

EVENT NO.	DISTANCE COUNT	TOTAL ROAD SIGM COUNT	$\begin{aligned} & \text { ROAD SIGN } \\ & \text { SLIDE CODE } \end{aligned}$	$\begin{aligned} & \text { STOP } \\ & \text { REQD? } \end{aligned}$	PHYSICAL RISK (i.e. risk slide) PROBABILITY	OTHER	PERS 288 REF.	COMMENTS
788	-	-	-	-	R, L	risk		C2
789	-	_	_	-	R,L	stop continuous		C2 2 + $10 \mathrm{~s} / \mathrm{d} . \mathrm{s} .+20 \mathrm{~s}$
790	33368	-	-	-	-	start continuous		
791	33380	55	01101111	no	-			direction sign
792	-	-	-	-	R,M	risk		$\mathrm{C} 2+3 \mathrm{~s}$
793	-	-	-	-	,	stop continuous		
794	33488	-	-	-	-	start continuous		
795	33500	56	01110001	no				danger children
796	-	-	-	-	R,H	risk		$\mathrm{C} 2+2 \mathrm{~s}$
797	33541	-	-	-	,	stop continuous		$\mathrm{C} 2+10 \mathrm{~s} / \mathrm{d} . \mathrm{s} .+20 \mathrm{~s}$
799	33553	57	01110011	-		start continuous		$90 \mathrm{kmh}-1$ speed limit from C2 ${ }^{\text {c }}$
800	-	-	-	-		stop continuous		C2 + 10s
801	33830	-		-		start continuous		
802	33847	58	01110101	no				danger no overtaking
803 804	-	-	-	-	R,L	risk ${ }^{\text {stop continuous }}$		$\mid \mathrm{c} 2+2 \mathrm{~s}$
805	33983	-	-	-	-	start continuous		
806	34000	59	01110111	no	-			$60 \mathrm{kmh}-1$ speed limit from C 2
807	-		-		R,L	risk		$\mathrm{C} 2+3 \mathrm{~s}$
808	-	-	- -	-	,	stop continuous		
809	34095	-	-	-	-	start continuous		
810	34107	60	01111001	yes		start timer when vehicle stops		stop sign
811	-	61	01111011	no		change slide at 25s		go sign
812	-	-	-	-	R,M	risk		C2 $20.1{ }^{\text {c }}$ + 20
813 814	-	-	-	-	,	stop continuous		C2 2 10s/d.s. +20 s
815	34160	62	01111101	-		start continuous		$90 \mathrm{kmh}-1$ speed limit from C2
816	-	-		-	-	stop continuous		C2 + 10s
817	34356	-	-	-	-	start continuous		
818 819	34373	63	01111111	no		stop contínuous		60kmh-1 from C2
	-				-	stop contitiuous		

IVENT isu.	DISTANCE COUNT	TOTAL ROAD SIGN COUNT	ROAD SIGN SLIDE CODE	$\begin{aligned} & \text { STOP } \\ & \text { REQD? } \end{aligned}$	PHYSICAL RISK (i.e. risk slide) PROBABILITY	OTHER	PERS 288 REF.	COMMENTS
820	34463	-	-	-		start continuous		
821	34480	64	10000001	no				Rest 1K
822	-	-	-	-		stop continuous		C2
823	34542	-	-	-	-	start continuous		
824	34559	-	-	-	$p=1$	risk sequence		compulsory risk here
825	-	-	-	-	P	stop continuous		d.s. + 20s
826	34656	-	-	-	-	start continuous		
827	34873	65	10000011	no	-			pedestrians
828	-	-	-	-	R,M	risk		$\mathrm{C} 2+3 \mathrm{~s}$
829	-	-	-	-	R,M	stop continuous		$\mathrm{C} 2+10 \mathrm{~s} / \mathrm{d} . \mathrm{s} .+20 \mathrm{~s}$
830	35000	-	-	-	-	VDU		Message: Change to magazine N° \#5 in 30 seconds. Buzzer
831	35050	80	10100001			dummy stimulus		
832		-	-	-	-	read code		Read at C1. Latch fader "on"
833	-	-	-	-	-			Message: Change to mag. \#5
834	-	-	-	-	-	stop logging		Ignore distance pulses and decrement distance count. Stop logging data.
835	-	-	-	-	-	proj reset		E presses projector reset S/W Start counting distance pulses
836	-	1	00000011	no	-	dummy stimulus		Change to this slide at 1 st distance pulse received
837	-	-	-	-	-	read slide code		d.s. + 1s
838	-	-	-	-	-	restart logging		Restart if slide I.D. is O.K.
839	35190	-	-	-	-	start cont datastore		Continuous storage of analog data from now on
840	35320	2	00000101	no	-			no overtaking
841	-	-	,	-	R,L	risk		$\mathrm{C} 2+3 \mathrm{~s}$
842	35600	3	00000111	no	-			trucks
843	35616	-	-	-	R, M	risk		$c+s$
844	35616	-	-	-	-	R-U. transition police detect		
845	35740	4	00001001	no				police 1K

$\begin{aligned} & \text { EVENT } \\ & \text { NO. } \end{aligned}$	distance COUNT	TOTAL ROAD SIGH COUNT	ROAD SIGN SLIDE CODE	$\begin{aligned} & \text { STOP } \\ & \text { REQD? } \end{aligned}$	PHYSICAL RISK (i.e. risk slide) PROBABILITY	OTHER	PERS 288 REF.	COMMENTS
846	35853	5	00001011	no				danger road from right
847	-	-	-	-	R,L	risk		$\mathrm{C} 2+18$
848	36013	6	00001101	no				danger cattle
849	-	-	-	-	R,M	risk		$\mathrm{C} 2+2 \mathrm{~s}$
850	36067	7	00001111	no				distance sign
851	36272	8	00010001	no				$60 \mathrm{kmh}-1$ from C2
852	36288	-	-		(U)	```R - U trans. (phys. risk)```		((2) rural to urban transition, physical risk
853	-	-	-	-	U,L	risk		$\mathrm{C} 2+2 \mathrm{~s}$
854	36288	-	-	-	U	Low-high stimulus density trans. R.L.G		RLG set
855	36291	9	00010011	no				$60 \mathrm{kmh}-1$ -
856	36304	10	00010101	no				danger children
857	6319	-	-	-	U, M	risk (physical)		$\mathrm{c} 2+3 \mathrm{~s}$
858	36319	11	00010111	yes	,	start timer when veh. stops		red traffic signal
859	-	12	00011001	no		change to this slide after 25s		green traffic signal
860	-	-	-	-	U, $\mathrm{E}^{\text {d }}$	risk (physical)		C2
861	36336	13	00011011	no	-			
862 863	36359.	14	00011101	no				green traffic signal
863	- ${ }_{36391}$	-	- 0001111	-	U,L	risk (physical)		C2
864	${ }^{36391}$	15	00011111	no	U,L			${ }_{\mathrm{C} 2} \mathrm{green}$ traffic signal
866	36415	16	00100001	yes		start timer when veh.		stop sign
867	-	17	00100011	-	\sim	25 s after stop, change to this slide		go sign
868	-	-	-	-	U,M	risk prob. gen.		risk prob gen sampled at C2
869 870	36437 36454	18	00100101 00100111	no	-			hospital sign red traffic signal. Start
870	36454	19	00100111	yes	-			red traffic signal. Start +imar whnn -...u:-1

$\begin{aligned} & \text { EVENT } \\ & \text { ivj. } \end{aligned}$	distance COUST	TOTAL RDAD SIGN COUSit	ROAD SIGN SLIDE CODE	$\begin{aligned} & \text { STOP } \\ & \text { REQD? } \end{aligned}$	PHYSICAL RISK (i.e. risk slide) PROBABILITY	OTHER	PERS 288 REF.	COMMENTS
871	-	20	00101001		-	25 s after stop change to this slide		
872	-	-	-	-	U,L	risk prob generator		risk prob gen sampled at C2
873	36479	21	00101011	no				Slippery road
874	-	-	-	-	U,L	risk		C2 2 2s
875 876 87	36509	22	00101101	no		risk prob		green traffic signal
877	${ }^{-} 5534$	23	00101111	no	U,L	risk prob generator		pedestrian crossing
878	-		-	-	U,M	risk prob generator		C2 + 1s
879	36561	24	00110001	yes				Stop sign. Start timer when vehicle stops
880	-	25	00110011			25 s after stop change to this slide		go sign
881	-	-	-	-	U,M	risk prob generator		
882	36583	26	00110101	yes				red traffic signal. Start timer when vehicle stops
883	-	27	00110111	no		25 s after stop change to this slide		green traffic signal
884	-	-	-	-	U,L	risk prob generator		C2
885	36607	28	00111001	no				school children crossing
886	36632	29	-	-	U, M	risk prob generator		
887	36632	29	00111011	yes	-			red traffic signal. Start timer when vehicle stops
888	-	30	00111101	no	-	25 s after stop change to this slide		green traffic signal
889	-	-	-	-	U,L	risk prob generator		
890	36650	31	00111111	yes	-			Stop sign. Start timer when vehicle stops.
891	-	32	01000001	no		25s after stop		go sign
892	-	-	-	-	U,M	risk prob generator		C2
893 394	36680	33	01000011	no		risk prob generator		pedestrian crossing C2
394 395	36702	- 34	01000101	- ${ }^{\text {yes }}$	U,M	risk prob generator		red traf sig. Start timer

Appendix $B \quad: \quad$ Risk slide numbers and flags

APPENDIX B: Risk slide numbers and flags:

Risk Slide number	Emergency flag	Dummy stimulus flag
1	0	0
2	0	0
3	0	0
4	0	1
5	0	0
6	0	0
7	1	0
8	0	1
9	0	0
10	0	1
11	0	0
12	0	0
13	0	1
14	0	0
15	0	1
16	0	0
17	0	0
18	0	0
19	0	1
20	0	0
21	0	0
22	0	0
23	1	0
24	0	1
25	0	0
26	0	0
27	0	1
28	0	0
29	0	0
30	0	0
31	0	1
32	0	0
33	0	0
34	0	1
35	0	0
36	0	1
37	0	0
38	0	0
39	0	0
40	0	1
41	0	0
42	0	0
43	0	1
44	0	0
45	0	0
46	0	0
47	1	0
48	0	1
49	0	0
50	0	1

APPENDIX B: (Cont.)

Risk slide number	Emergency flag	Dummy stimulus f1ag
51	0	0
52	0	1
53	0	0
54	0	0
55	0	1
56	0	0
57	0	0
58	0	0
59	1	0
60	0	1
61	0	0
62	0	1
63	0	0
64	0	0
65	0	1
66	0	0
67	0	0
68	1	0
79	0	1
71	0	0
72	0	0
73	0	0
74	0	1
75	0	0
77	0	1
78	1	0
79	0	0
80	0	0

