PU 519.68

SPECIAL REPORT

SUBROUTINES FOR THE N.I.P.R. BATCH PROCESSING SYSTEM

REVISED EDITION

NATIONAL INSTITUTE FOR PERSONNEL RESEARCH COUNCIL FOR SCIENTIFIC AND INDUSTRIAL RESEARCH

PLEASE REIUKN TO:N.I.P.R., P.O. COX 10319, JOHA iN NESEURG

STUUR AS3. iERUG AAN:N.I.P.N., POSS'JS 10319

JOHANNESBURG

HSRC Library and Information

 ServiceRGN-Biblioteek en Inligtingsdiens

DATE DUE - VERVALDATUM

The first set of system subroutines was written in Assembly language for the IBM 704 computer. With the conversion to the IBM 360 machine, the set was first rewritten in Basic Fortran and when full Fortran IV was available the set was rewritten with many additicnal facilities. The final version was put into operation in August 1967.

The subroutines in section B are a selection of the more generally useful subroutines that have been written by various members of the division for different programs.

RGM Wimiotem

The NIPR package is a set of subroutines for facilitating the writing of programs for the NIPR system. Its use ensures a uniform method of data storage so that the same data may be used without modification by many different programs.

The system also makes possible the inclusion of new facileties, for example in the future it will allow for the selection and rejection of data, without any modification of the computing programs.

There follows
(I) a list of the present routines and their purpose
(II) a short guide to system conventions
(III) a description of the method for working out package storage requirements
(IV) a more detailed description of the subroutines and their parameters
(V) a list of error reports given by the package.

I．List of routines in the Basic Packace
（those in parentheses（）are specific to the package and are not used by programmers）

A．Basic Subroutines

Page
Al（CLSALL）Close all currently open files．
A2（CLSINP）Close an input file．
A3（CMSAVA）A substitute for named common．
A4 CNV Forms a double word containing 8 alphameric or special characters given integer representations of the characters required．

A5 DATE Supplies the time and the date to the calling program．
A6 EBCDIC Converts a Fortran integer to EBCDIC．
A7 ELT Supplies elapsed time since the last call to STINT．

A8 FINISH Normal terminating routine．
A9（FREECM）Frees an area in the common storage used by the package．

Al0（GETCM）Obtains an area in the common storage used by the package．

Al1 HEAD Prints out a heading at top of a new page．
Al2 IANAL Tests if a double precision name refers to a data set。

Al3 IN Opens an NIPR formatted data file for input．
A13．1 INDSEQ Compares two double precision alphanumeric names．
Al4 INFCN Supplies the column names of a given data set．
Al5 INFCVN Supplies a specified column name of a given data set．

Al6 TNFTP Obtains the value of a specified parameter from the parameter record of a data set．
Al7 INFJOB Obtains the current jobstep title。
Al8 INFNC Supplies the no．of cases processed from a data set。

Al9 INFNE Supplies the no．of incorrect cases read from a data set．

A20 INFNV Supplies the no．of variables for a data set．

Page

A2	INFRN	Supplies the row names of a data set.
A	INFRVN	Supplies a specified row name of a data set.
A	(INICM)	Initialises the common area used by the package.
	1 INOUT	Opens an NIPR formatted data set for modification.
A	(INTERP)	Interprets parameters for data selection.
A2	ISYM	Supplies the index of an element in a halfsymmetric array.
A2	ITCH	Supplies a specified byte of a variable.
A2	MISS	Tests for the NIPR code for missing information.
A	OUT	Opens an NIPR formatted data file for output.
A2	PRDATE	Prints the time and the da
A	RD	Reads and supplies a case-name and the data from a record in an NIPR formatted data file.
A3	(RDFS)	Read cards for data selection.
A3	RMB	Reads a matrix from an NIPR formatted file.
A3	RMBF	Reads matrix from an NIPR formatted file and returns it as a Fortran 2-dimensional matrix.
A3	START	Initialising routine which reads title and parameter cards.
A35	(STIMER)	Starts timing interval.
A36	STINT	Allows a programmer to start a timing interval.
A3	TAG	Tags a character to the end of a double-word.
A3	TIME	Supplies the time. (It is usually more convenient to use DATE).
A3	TTIMER	Supplies time left in interval started by STIMER.
A40	UNCLE	Abnormal-ending routine.
A4	WD	Writes a casemname and its data into a record in an NIPR formatted file.
A4	WEF	Closes an output file.
A4	WMB	Writes a matrix to an NIPR formatted file。
A4	WMBF	Writes a Fortran 2-dimensional matrix to an NIPR formatted file.

B. Computational or Functional Subroutines

Page.

B 5	ASDLIM	Computes 95\% confidence limits for a mean and a standard deviation.
B 10	AVLIM	Computes 95\% confidence limits for a mean.
B 12	CHISQ	Computes inverse Chi-square.
B 14	CONR	Computes 95\% confidence limits for a correlation coefficient.
B 16	DBN	Accumulates frequencies for HIST.
B 20	FNORM	Computes a Normal variate, given the area under the Normal curve.
B 25	HIST	Prints histogram of values in DBN.
B 30	INSLD	Computes the inverse of a symmetric matrix.
B 40	MOUT	Prints a matrix.
B 50	MRSIG	Computes and prints confidence limits for multiple R.
B 52	NIPLOT	Plots points and/or draws graphs on CALCOM Plotter.
B 55	PRNTR	Prints several arrays in succeeding lines.
B 60	PSAM	Prints a half symmetric matrix with format options.
B 70	PSYM	Prints a half symmetric matrix (fixed format).
B 80	RAPS	Computes Principal Components by Horst's Method.
B 90	SDLIM	Computes 95\% confidence limits for a standard deviation.
B 95	SELECT	Builds up an array of variables to be selected from specifications given on cards.
B100	SIGLV	Computes the one-tailed significance level for a given normal variate.
3110	SIGR	Prints significance pattern of correlations.
Bl20	STACHI	Computes significance of Chi-square.
B130	WILH	Computes significance of an F-ratio.

II. How to write a programme for the NIPR system

1. The purpose of using the package is:-
(a) To ensure that programmes use consistent formats for input and output on magnetic tape or disc so that any programme can use any NIPR file.
(b) To have some uniformity in control cards.
(c) To standardise the housekeeping information (e.g. programme, parameter and data set identification, number of records read or written, error diagnostics etc.) printed out by each programme.
(d) To simplify programme documentation by eliminating the need for describing data formats, error returns, etc.
(e) Although the programme does not have to provide storage for the title, parameters and variable names of input files, the information can be obtained by using INFJOB for the title, INFNV or INFIP for the parameters, and INFRN, INFRVN, INFCN, INFCVN for variable names.

The number of cases read in by any of the input subroutines is given by the function INFNC.
2. (a) The subroutine START is called to read in the job-step title and parameter cards, initialise storage used by the package, and print the parameters, the clock time and the date. The arguments of START are NP and KPARM and an array KPARM of dimension NP must be provided. The parameters are integers.
(b) Data is read from magnetic tape or disc in binary mode in the NIPR standard format with subroutines RD (after opening the file with IN) or with RMB or RMBF (without IN). In special cases where the input is small, such as a supplementary matrix, card input may be provided as an alternative.
(c) Output is written on tape or disc in standard NIPR format with the subroutine WD (opening the file with OUT and closing it with WEF), or WMB or WMBF (without OUT or WEF), or printed.
(d) The NIPR standard layout for data on tape or disc is as follows:-
(i) The first record of a file contains the title card read in by the subroutine START for the step in which the file was generated.
(ii) The second record contains the file parameters, viz. the number of variables, the number of cases (or records), the form of the data matrix ($0=$ rectangular, $I=$ symmetric, $2=$ diagonal) and five others used for transmitting information between programmes.
(iii) The third record contains the names of the variables in double length words.
(iv) The remaining records have the following format:First word is a double length word containing the case number or case name in EBCDIC. Subsequent words contain data in single precision hexadecimal floating point.
(v) The last record is a dummy record marking the end of file. It has same format as a data record, and case number OOABCDEF (in hexadecimal).
(e) All matrices, unless otherwise stated, are compacted into unimdimensional arrays. (The elements of halfsymmetric matrices are written in the order (1,1), $(1,2),(2,2)$, etc.
(f) All programmes are terminated either with FINISH (normal ending) or,
if errors have occurred, with UNCLE.
(g) UNCLE is available to programmers for reporting an error with an identifying number (>100) and terminating the job-step with a trace-back.
3. Variable names.

Storage for variable names (up to 270 names per file) is provided in the package for input files. The name of the $I^{\text {th }}$ variable of the data set numbered NDS can be obtained by calling the double precision function INFRVN or the subroutine INFRN. Variable names must be provided for output files and this can be done in four ways. If the NAMES argument in OUT is zero, integer names are generated。 If the argument is a positive integer this is interpreted as a data set number and the variable names of that data set are used. If it is a negative integer the absolute value is interpreted as a data set number, but in this case the column or case names are used provided the whole matrix (file) has been read in by RMB or RMBF. Anything else in the argument is interpreted as the name of a double precision array containing the required names.

If the matrix has been read in by $R M B$ or $R M B F$, the column or case names can be accessed with the subroutines INFCN or INFCVN.

Modified output variable names that are related to an in put set can be generated by using the subroutine TAG which shifts all characters of a name one position to the left and places a specio fied character in the last position.

III. Package Storage Requirements

In order to reduce the storage space required by NIPR programs, the package has been altered to reduce the amount of space available to it for storing information about the data sets being used from 2000 words to 900 words. This means that, in general, the maximum size of arrays of data read in by programs will be considerably diminished. However where the reduction in the number of variables causes inconvenience, e.g. with programs using several input data sets, the program should be compiled with a "large" version of subroutine START, requesting ari appropriate amount of space determined as outlined below.

Calculation of storage reguirements for a program

This can be done as follows:

1. A certain amount of space is reserved by package for general storage purposes. It includes:

Job Set Up Information -24 words
Vector of Data Sets -40 words
64 words

For package with 900 words storage this leaves $900-64=836$ words for storing information about data sets. This space is appropriated when asked for according to the rules stated below. Note: that if an odd number of words of storage is requested package rounds this number up to the next multiple of 2 .
2. Input Buffer:

If there are any input files an input buffer will be required with length in words equal to the largest number of variables in an input data set (rounded up, if necessary). Note: in this connection that it is more efficient to open the data set with the largest number of variables first.
3. Each input file requires:

Compulsory

1. For file dope vector 20 words
2. For variable names (if NV=no. of variables in data set) $\quad(2 * N V)+2$ words

Optional

1. If RMB is used, space required for column names* (where NC=no. of column (case) names)
2. If a diagonal matrix is to be read by $R M B$ additional vector space must be available when RMB is called, NV words (but this will be freed by RMB immediately (rounded up, after use)** if necessary) (manno. ?
*The column name space will be freed again if a diagonal matrix on disc is read into a full matrix, a half symmetric matrix or a diagonal matrix. However this space must be available to the program at the time that RMB is called.
**The row name space will be freed if a lxN vector on disc is read as a diagonal matrix.
3. Each output file requires:

Compulsory

1. For file dope vector 4 words

Optional.

1. If integer names are to be generated and input buffer is less than $2 * N V$

2*NV words
(This space must be available when requested but will be freed immediately after use)
2. If a half-symmetric matrix is to be written to disk and the input buffer is less than NV (No. of vars. per row)

NV words
(Space must be available, but will be freed (rounded up, immediately)

It will be seen that the effective size of package can be considerably increased by judicious sequencing of the instructions for opening input and output files. (Because input data sets usually retain the space acquired by them, while most of the space used by output data sets is freed once they have been opened). E.g. A program requires 2 input data sets and 1 output data set for which integer names are to be generated:
(i) If data sets are opened in the sequence Input (1), Input
(2), Output, the maximum number of variables in each data set is 112
[836 (space available) $=$
246 (lst Input) +112 (Buffer) +246 (2nd Input) +228 (Output) +4 (Unused)]
(ii) Whereas, if data sets are opened in the sequence Input (1), Output, Input (2), the maximum number of variables in each data set is 157 .
[836 (space available) =
336 (lst Input) +158 (Buffer, rounded up) +318 (Output) + Unused as yet
$=336$ (lst Input) +158 (Buffer) +4 (Output) +336 (2nd Input) +2 (Unused) (After $2 r_{i}$ Input has been opened).]

Detailed Examples showing calculation of space requirements
E.g. l) Data sets: I Input, opened with IN

1 Output, names not generated.
Subtract constant requirements for data sets to find space available for storage of variables
i.e. 836 words (Total Space Available)

- 20 (Dope Vector for Input File)
- 2 (For row names for Input File)
- 4 (Output File Dope Vector)

810 (Remaining Space)

To find NV (the maximum number of variables permitted in the input data set), divide the space remaining by 3 (NV words are required for the input buffer and $2 * N V$ for storing variable names)

(This would be truncated at the decimal point, if necessary).
i.e. Maximum no. of variables in the input data set is 270.

Checking, we find that

20	(Input dope vector)
542	(i.e. $2 \times 70+2$) (Variable Names)
270	(Input buffer)
4	(Output buffer)
836	Just fits into the available space.

2) Data sets: l Input, opened with RMB (and assumed to be square)
1 Output, names not generated.

Subtraction of constant requirements yields

836 words	(Total Space Available)
-26	$(20+2+4$ as in e.g. l)
-2	(For column names for Input File)
$\frac{808}{}$	(Space remaining)

To find NV divide space remaining by 5 (NV words required for input buffer, $2 * N V$ for row name storage and $2 * N V$ for column name storage)

$$
\frac{5 \lcm{808}}{161.6}
$$

i.e. Maximum number of input variables when $R M B$ is used is 161.

Table 1 indicates the maximum permissible number of variables for the more commonly used data set combinations for package of size 900．It assumes（1）equal numbers of variables in all data sets，（2）square matrices when RMB used，and（3）all input data sets opened before all output data sets．

Table 1.

Total No．of Data Sets	No．of Input Data Sets	How opened	No．of Output Data Sets	Names gen． or not	$\begin{aligned} & \text { Max .no。 } \\ & \text { of vars. } \end{aligned}$
1	1	IN	0	－	271
1	0	∞	1	Not generated	Unlimited
2	1	IN	1	Not generated	270
2	1	RMB	1	Not gen 。	161
2	1	IN	1	Gen．	161
2	1	RMB	1	Gen．	115
8	1	IN	7	Not gen．	260
8	1	IN	7	All gen．	150
3	2	IN， IN	1	Not gen．	157
3	2	RMB ${ }_{8} \mathrm{RMB}$	1	Not gen．	87
3	2	IN，RMB	1	Not gen．	112

Table 2 indicates the amount of package storage space required to accommodate data sets larger than those indicated in Table lo It assumes（1）l output data set，names not generated，（2）square matrices when RMB used，and（3）equal numbers of variables in all data sets where more than one considered．

Table 2

	Data Sets Read with RD．		Data Sets Read with RMB．	
No。of Variables	No：of Data Sets Read	Space Required	No．of Data Sets Read	Space Required
200	1	690	1	1092
300	1	990	1	1592
500	1	1.590	1	2592
700	1	2190	1	3592
1000	1	3090	1	5092
200	2	1112	2	1916
300	2	1612	2	2816

IV. Description of the Subroutines and their Parameters

Conventions used for Subroutine Arguments

(a) Variable names may be referenced through a data set which has already been opened, by putting NAMES (1) equal to that data set number. e.g. If NAMES (1) $=12.000$, then the names are taken from data set No. 12 (which must have already been opened). The use of generated integers (i.e. $1,2,3,4, \ldots \ldots . .$.) is provided by putting NAMES (1) $=0.0 \mathrm{DO}$.
(b) Subroutines are written in Fortran except where otherwise stated.
(c) Data matrices consist of cases written columr-wise with variables rowwise. On external storage data matrices are stored as rectangular matrices with each column forming a record. Internally they are held either as single records, or if the complete matrix is in core, as a unidimensional array for half-symmetric matrices (the upper triangle of a symmetric matrix), or as a unidimensional or two-dimensional array in other cases.

SUBROUTINE CLSALL

```
Purpose : Close all currently open files, and print
    their data set numbers.
    Called by FINISH
Routines Called : UNCLE
    WEF
```


SUBROUTINE CLSINP(NDS)

Purpose	: Close an input file that is positioned after the final record. If any records remain to be read, UNCLE is called. Called by RMB.
Argument	$\begin{aligned} : N D S=\text { Integer, input }= & \text { Data set number of the } \\ & \text { input file. } \end{aligned}$
Routines Called	: FREECM
	RD
	UNCLE

SUBROUTINE CMSAVA(I,N,V)

Purpose	: This routine is used as a substitute for named common to provide storage for timing intervals.
Arguments	```: If I<<O, set internal array TIME(N+1) = V If I>O, " V = TIME(N+l) N = Integer specifying a timing interval. V = Real number = a time. Called by the timing subroutines (See ELT, STINT).```

REAL*8 FUNCTION CNV(N1, N8)

Purpose : Return the low order bytes of N1 to N8 concatenated together. An assembly language subroutine.

Usage : REAL*8 CNV,NAME NAME $=\operatorname{CNV}(N 1, \ldots . . . N 8)$

Arguments : N1 to N8 : Integer, inputs.
Routines Called : none.

SUBROUTINE DATE (Y,MM,D,H,M,S)


```
DOUBIE PRECISION FUNCTICN EBCDIC (I)
Purpose : Convert a Fortran integer to EBCDIC
Usage : REAL*8 A,EBCDIC
    I = 137
    A = EBCDIC(I)
    A now contains the EBCDIC representation of I
    i.e. in Hexadecimal :-
    A becomes 4040404040F1F3F7
Argument: I = Integer, input.
Restrictions : I > O
Routines Called : CNV
UNCLE
```

FUNCTION ELT (N)

Purpose	: Give the elapsed time in minutes since the last call to STINT with the same identifier N .
Usage	: $\mathrm{X}=\operatorname{ELT}(\mathrm{N})$
Argument	: $\mathrm{N}=$ Integer, input $=0,1,2,3$.
Restrictions	(i) Only $N=1,2$ or 3 may be used as the package uses $\mathrm{N}=0$. (ii) CALL STINT(N) must precede the use of $\operatorname{ELT}(\mathrm{N})$.
Routines Called	$\begin{aligned} & \text { : CMSAVA } \\ & \text { TTIMER } \end{aligned}$

SUBROUTINE FINISH

SUBROUTINE FREECM(LENGTH, INDEX)

SUBROUTINE GETCM(LENGTH, INDEX)

Purpose	: Obtain an area in common /CHMXYZ/ from the list of free areas.
Usage	: CALL GETCM (LENGTH, INDEX)
Action	: An area of length equal to LENGTH rounded up to a multiple of 2 is removed from the free chain used by the package. The location of the area is returned in INDEX.
Argument	$\begin{aligned} : & \text { LENGTH }=\text { Integer, input } \\ \text { INDEX } & =\text { Integer, output. } \end{aligned}$

SUBROUTINE HEAD (N)

Purpose	: Print out current step title, date, time and page number at the top of a new page.
Action	: Takes a new page and prints out the standard information. If $N \leqslant O$ No page number is given. If $N=+v e$ number, the first page is numbered N and N is incremented by 1 ready for subsequent calls to the routine.
Usage	: CALL HEAD (N)
Argument	: $\mathrm{N}=$ Integer, input and output.
Routines Called	DATE
	INFJOB

FUNCTION IANAL (D)

Purpose	: Determine whether D is the number of a set.
Action	```: IANAL = Integer value of D if D has an integer value or zero.```
	$=-999$ if D is EBCDIC.
Usage	: REAL*8 D
	$\mathrm{I}=\mathrm{IANAL}$ (D)
Argument	: $D=$ Double precision, input.
Restriction	: (Tested for integers < 100)
Routines Called	: none.

SUBROUTINE IN(NDS)

Purpose	: Open an NIPR formatted data file for input.
Usage	: CALL IN(NDS)
	NDS is a Fortran data set number.
Action	: This opens the data set NDS, and saves information about it in its file dope vector.
	A message that the file has been opened and the data set number, the title of the job that created the data, the file parameters, and the creation date are printed.
Restrictions	: NDS must not be equal to the installation defined data set numbers for SYSIN and SYSOUT, and must be less than the installation defined maximum.
	The data set NDS must not be open. (An input data set is automatically closed when the end of data is read.)
Arguments	: NDS $=$ Integer, input.
Routines Called	: FREECM
	GETCM
	INTERP
	UNCLE .

Al3.1

FUNCTION INDSEQ (MAN1,MAN2)

Purpose	: Indicate the numeric sequence of two numeric case names which have been read in with 'A' format. (Note: This subroutine should always be used when A-format numeric names are compared for sequence. It is designed to eliminate problems caused by the unexpected sign changes which can invalidate direct numeric comparisons of EBCDIC numbers. When making comparisons the function does not allow for shifted columns e.g. 19 will be higher than ' 2 ',but '2'will be regarded as higher than ly).
Action	$\begin{array}{rlrl} \text { INDSEQ } & =\text { Negative (i.e.-l) } & & \text { if MAN1 }<\text { MAN2 } \\ & =0 & & \text { if MAN1 }=\text { MAN2 } \\ & =\text { Positive (i.e. }+1 \text {) } & \text { if MAN1 }>\text { MAN2 } \end{array}$
Usage	: REAL*8 MAN1,MAN2 IF (INDSEQ (MAN1,MAN2)) 10,20,30
Arguments	: MANI = Double precision, input MAN2 $=$ Double precision, input

SUBROUTINE INFCN (NDS,NAMES)

DOUBLE PRECISION FUNCTION INFCVN(NDS, I)

FUNCTION INFIP(NDS,I)

SUBROUTIINE INFJOB(A)

Purpose : Obtain the current job step title.

Usage : DIMENSION A(18)
CALL INFJOB(A)

Action : The current job step title will be placed in A.
Argument : A = Real array, output.

Routines Called : none.

FUNCTION INFNC(NDS)

Purpose	: To obtain the number of cases read correctly from or written to the data set numbered NDS.
Usage	: $\mathrm{K}=\mathrm{INFNC}(\mathrm{NDS})$
Action	: If NDS is an input file, K is the number of cases read and passed to the programme. If NDS is an output file, K is the number of cases written.
Argument	: NDS $=$ Integer, input.
Restrictions	: NDS must have been opened.
Routines Called	: UNCLE.

FUNCTION INFNE(NDS)

Purpose	$:$ To obtain the number of records incorrectly read.
Usage	K = INFNE(NDS)
Action	K is set to the number of errors.
Argument	: NDS = Integer, input.
Restriction	This is a dummy subroutine at present.
Routines Called : none.	

FUNCTION INFNV(NDS)

FUNCTION INFRN(NDS, NAMES)

DOUBLE PRECISION FUNCTION INFRVN(NDS,I)

```
Purpose : Supply the I th row name (variable name) for
    data set numbered NDS.
Usage : REAL*8 INFRVN,A
    A = INFRVN(NDS,I)
Action : The I }\mp@subsup{}{}{\mathrm{ th }}\mathrm{ variable name will be placed in A.
Arguments : NDS = Integer, input.
    I = Integer, input.
Restrictions : NDS must have been opened for input.
Routines Called : UNCLE.
```

SUBROUTINE INICM (LENGTH,ND,LUSER)

Purpose	: Initialise the COMMON/CHMXYZ/ for a particular version of the package.
Usage	: CALL INICM(LENGTH,ND,LUSER)
	LENGTH is the length of the common array (present version $=900$)
	ND is the maximum data set number (present version = 40)
	LUSER is the length of the user area (0)
	(This argument is left over from an earlier idea, and is not used.)
Arguments	$\begin{aligned} : \text { LENGTH } & =\text { Integer, input. } \\ \text { ND } & =\text { Integer, input. } \end{aligned}$
	LUSER = Integer, input.
Restrictions	: This subroutine is called from START. It should not normally be used elsewhere.
Routines Call	: none.

A23.1

SUBROUTINE INOUT(NDS,NV,INK)
: Open an NIPR formatted data file (data set no.NDS'), which has already been started and position it at a specified point in the data set, so that additions to the file can be made from that point.

Usage : CALL INOUT (NDS,NV,INK)

Action : This opens the data set NDS and checks that the number of variables in the first parameter of the IP array is equal to NV, the number of variables expected. If not, an error message is printed and there is a transfer to UNCLE.

A message that the file has been opened and the data set number, the title of the job that created the data, the file parameters, and the creation date are printed.

However information about the IP array and the Variable Names is not stored in the file dope vector for further use.

INK cases of the data set are then read, leaving the data set positioned so that additions to it will begin immediately after the INK'th case.

A message giving the name of the last case read, and indicating that additions to the data set will start at that point, is printed.

Restrictions : NDS must not be equal to the installation defined data set numbers for SYSIN and SYSOUT, and must be less than the installation defined maximum. The data set NDS should not have been opened, and left open, by the calling program.
(An input data set is automatically closed when the end of data is read).

A23.1 (Continued)

Arguments : NDS $\begin{aligned}: & \text { Integer }, \text { input } \\ N V & =\text { Integer, input } \\ \text { INK } & =\text { Integer, input }\end{aligned}$

Routines Called : FREECM
GETCM
UNCLE.

SUBROUTINE INTERP(NDS)

Purpose	: To interpret the variable and case selectio information read in by RDFS and to write variable selection arrays for data set numbered NDS.
Usage	: CALL INTERP(NDS)
Argument	: NDS $=$ Integer, input.
Note	: At the moment this is a dummy subroutine.

FUNCTION ISYM(I,J)

Purpose	: Return the position in a half-symmetric array of the (I, J) th element of a matrix.
Usage	: $\mathrm{K}=\operatorname{ISYM}(\mathrm{I}, \mathrm{J})$
	$A=B(K)$
Action	: If B contains the half-symmetric array, then A will contain the (I, J) th element of that array.
Arguments	: $\mathrm{I}=$ Integer, input.
	$J=$ Integer, input.

Routines Called : none.

FUNCTION $\operatorname{ITCH}(A, N)$

FUNCTION MISS(X)

SUBROUTINE PRDATE

Purpose : Print the time and the date.

Usage : CALL PRDATE

Action : This prints the current time and date, without taking a new line, in the following format, starting in column 88:

DATE:bbdd/mm/yybbbbTIME:bbhh,mm.ss
b = blank

Routines Called : DATE.

ENTRY RDI(NDS,CASE,SC,IJK)

Purpose	: To read and select a record from an NIPR data set No. NDS, returning the case name in CASE, and placing the variables into: SC(I), SC(I+IJK), SC(1+2*IJK), SC(1+3*IJK) etc.
Usage	$\begin{aligned} : & \text { REAL CASE*8,SC(100) } \\ & \text { CALL RD(NDS,CASE,SC,IJK) } \end{aligned}$
Arguments	```: NDS = Integer, input. CASE = Double precision, output. SC = Real array, output. IJK = Integer, input.```
Restrictions	: IN must have been called for the file NDS. NOTE : (i) RDI is an entry point in RD. (ii) If IJK = l, then the result is the

Routines Called: UNCLE.

SUBROUTINE RDFS

Purpose	: Read file selection cards.
Action	: Called in START if cols. l-4 of the parameter card are zero. This subroutine reads and stores the file selection information in uninterpreted form for use by the subroutine INTERP, called by IN the first time the file is opened.
Restriction	: Do not use anywhere else. It is presently a dummy routine.
Routines called	: none.

Purpose	Read a matrix from disc or tape in NIPR format, and write it to array A.
Usage	CALL RMB(NDS, $\mathrm{A}, \mathrm{LA}, \mathrm{NRA}, \mathrm{NCA}$)
Action	: A matrix of NRA rows and NCA columns in the data set numbered NDS is read into the array A. The matrix is always in rectangular form on disc or tape, but its form in core depends on the parameter LA.
	If $L A=0$, a rectangular matrix is requested. If the matrix on disc is rectangular, it is copied into A. If the matrix on disc is symmetric it is copied into A in full format. If the matrix on disc is diagonal, it is written into A as a diagonal matrix with zeroes on the off diagonal elements.
	If $L A=1$, a half-symmetric matrix is requested. If the matrix on disc is not square, an error message is printed and there is a transfer to UNCLE. If the matrix on disc is rectangular, a warning message is printed and the upper triangle is copied into A. If the matrix on disc is symmetric, the upper triangle is copied into A columnwise. If the matrix on disc is diagonal, it is expanded into a half-symmetric matrix.

If $\mathrm{LA}=2$, a diagonal matrix is requested.
If the matrix on disc is rectangular
it must be square or Nxl or lxN otherwise an error message is printed and there is
a transfer to UNCLE.
If the matrix on disc is rectangular or half-symmetric, its diagonal is extracted; or if it is an Nxl or lxN vector the vector becomes the diagonal.
If the matrix on disc is diagonal, it is copied into A.

If $L A=3$, the matrix is required in the same form as it is on the disc.
After it has been written LA is changed to correspond to its actual form.

Arguments : NDS = Integer, input.
A $\quad=$ Real array, output.
LA $=$ Integer, input and output.
NRA = Integer, output.
NCA $=$ Integer, output.

Routines Called : CLSINP
FREECM
GETCM
IN
RD
UNCLE.

Restriction
The IP(2) file parameter (no. of cols.) should not be smaller than the number of columns actually in the data set when $R M B$ is used.

SUBROUTINE RMBF(NDS,A,NDIM, NRA,NCA)

Purpose	: Read an NRA x NCA rectangular matrix from data set numbered NDS into the array A (which has rows of length NDIM) in the standard 2-dimensional Fortran form instead of the packed NIPR form.
Usage	CALL $\operatorname{RMBF}(\mathrm{NDS}, \mathrm{A}, \mathrm{NDIM}$, NRA, NCA $)$
Action	Calls RMB
Arguments	NDS = Integer, input. A = Real array, output. NDIM $=$ Integer, input. NRA = Integer, output. NCA $=$ Integer, output. Note : For further description of the compacted and full matrix forms see the IBM Scientific Subroutine Package Programmer's Manual (Version III) "Overall Rules of Usage" Pages 3-6
Routines Called	: RMB UNCLE.

SUBROUTINE START(NP,KPARM)

Purpose	: Initialise the common area used by the package, read the job-step title card and the parameter card, determine if variable selection is required, and read NP parameters from the parameter card into the array KPARM.
Usage	: CALL START (NP,KPARM)
Action	: The title card is read from the lst 72 columns in SYSIN and printed. The variable selection parameter is read from columns $1-4$ of the parameter carc and is acted upon as follows:- (i) If the variable selection parameter is equal to 1 , then the NP programme parameters are read into the array KPARM from columns 5-8, 9-12, 13-16, etc。 (i.e. in 4 column fields starting from field 5-8).
	(ii) If the variable selection parameter is greater than 1 , then ($N P+1$) programme parameters are read into the array KPARM, from columns l-4, 5-8, 9ml2,e etc. (i.e. in 4 column fields starting from field l-4). This is known as the "Packed Option"。
	(iii) If the variable selection parameter is equal to 0 ; or (in the Packed Option) greater than 1 but less than 1000, (i.e. Column 1 is equal to 0), RDFS is called to read the data selection specifications. (See RDFS).

Arguments \quad :	$\begin{aligned} & : \quad \mathrm{NP}= \\ & \text { KPARM }= \\ & \text { Note : } \end{aligned}$	Integer, input. Integer array, output. (i) A parameter card is required for the variable selection parameter even if there are no other parameters. (ii) Parameters may be packed into lcolumn fields (i.e. variable selection option in Column 1, next parameter in column 2, next parameter in column 3, etc.) by using the Packed Option. Parameters are then passed "4-at-a-time" starting with column 1 and must be unpacked by the programme .
Routines Called : CMSAVA		
	INICM	
	PRDATE	
	RDFS	
	STIMER	

SUBROUTINE STIMER（I，TIM）

Purpose	：Set up a timing interval of length TIM minutes．
Usage	：CALL STIMER（I，TIM）
Action	：If $I \leqslant O$ ，sets up a time interval（of length TIM） which is to be decremented only when the associated task is active（i．e．it measures task time）．
	If $I=1$ ，sets up a time interval（of length TIM）which is to be decremented con－ tinuously（i。e．it measures real time）． If $I=2$ ，program goes into a WAIT state for an interval of length TIM．
Arguments	：I＝Integer，input．
	TIM $=$ Integer，input 。
	Note ：This routine is usually used in con－ junction with SUBROUTINE TTIMER（I）．
Restriction	：The Package calls STIMER in SUBROUTINE START。 （Setting an interval of 600 Minutes）．

Routines Called ：DATE．

SUBROUTINE STINT(N)

Purpose : Start timer number N.

Usage : CALL STINT(N)

Argument: $\mathrm{N}=$ Integer, input, $=0,1,2,3$

Restrictions : Only $N=1,2,3$ may be used as the package uses $\mathrm{N}=0$

Routines Called : CMSAVA
TTIMER.

SUBROUTINE TAG(NAMES,N,NCHAR)

Purpose		Tag the character NCHAR at the end of N successive double precision words in the array NAMES.
Usage	:	REAL*8 NAMES (500)
		CALL TAG(NAMES, N , NCHAR)
Arguments	:	NAMES $=$ Double precision array, input and output.
		$\mathrm{N}=$ Integer, input.
		NCHAR $=$ Integer, input.
		Note: In tagging the character at the end
		of a name in NAMES, the name is
		shifted left and the lst character
		is lost.

Routines Called : CNV

ITCH.

SUBROUTINE TIME(NSECS, NDAY, NYEAR)

Assembler routine.

Purpose		Supply the current time as NSECS seconds, NDAY days and NYEAR years (mod 100).
Usage	:	CALL TIME (NSECS, NDAY, NYEAR)
Arguments	:	All the arguments are Integer, output.
		Note : It is usually more convenient to use SUBROUTINE DATE.

Routines Called : none.

FUNCTION TTIMER(I)

Routines Called : DATE.

SUBROUTINE UNCLE(X)

Purpose	: Print the number X as an error message and close all open files.
Usage	CALL UNCLE (X)
Action	: The error message number is printed in format F7.2.. and a trace back to the main programme is provided.
Argument	: $\mathrm{X}=$ Real, input.
	Note : The package error message numbers range from 1. to 99.. The remaining numbers may be used by programmers. A List of the Error Message numbers and their meanings appears in Section C.
Routines Called	: CLSALL
	ELT
	PRDATE
	TTIMER。

SUBROUTINE WD(NDS,CASE,SC)

```
Purpose : To write a record on data set numbered NDS
    with the case name from CASE, and data from
    the array SC.
Usage : REAL CASE*8,SC(100)
    CALL WD(NDS,CASE,SC)
Arguments : NDS = Integer, input
    CASE = Double precision, input
        SC = Real array, input.
Restriction : OUT must have been previously called for file
        numbered NDS.
Routines Called : UNCLE.
```

SUBROUTINE WEF(NDS)
Purpose : Write the terminal record and end of file to
disc or tape for the data set numbered NDS
and print a message to that effect and the
number of records written.

Usage : CALL WEF(NDS)

Arguments : NDS $=$ Integer, input.

Restriction : The file numbered NDS must be open for output.

Routines Called : UNCLE.


```
Arguments : NDS = Integer, input
    A = Real array, input
    LA = Integer, input
    NRA = Integer, input
    NCA = Integer, input
    IPX = Integer array, input
    RH = Double precision array, input
    CH = Double precision array, input.
```

Routines Called: EBCDIC
FREECM
GETCM
IANAL
INFCVN
INFRVN
ISYM
OUT
WD
WEF
UNCLE.

SUBROUTINE WMBF (NDS,A,LA,NDIM,NRA,NCA,IPX,RH,CH)

Purpose	: Write a matrix of size NRA x NCA and form LA to the NIPR formatted data set numbered NDS from the array A which has rows of length NDIM (i.e. the matrix is in Fortran form instead of the packed NIPR form).
Usage	: CALL WMBF ($\mathrm{NDS}, \mathrm{A}, \mathrm{LA}, \mathrm{NDIM}, \mathrm{NRA}, \mathrm{NCA}, \mathrm{IPX}, \mathrm{RH}, \mathrm{CH}$)
Action	: After compacting the matrix in A the subroutine WMB ($\mathrm{NDS}, \mathrm{A}, \mathrm{LA}, \mathrm{NRA}, \mathrm{NCA}, \mathrm{IPX}, \mathrm{RH}, \mathrm{CH}$) is called. The data is then restored to the original form. The use of the arguments is the same as in WMB.
Arguments	: NDS $=$ Integer, input
	A $=$ Real array, input
	LA = Integer, input
	NDIM = Integer, input
	NRA = Integer, input
	NCA = Integer, input
	IPX = Integer array, input
	$\mathrm{RH}=$ Double precision array, input
	$\mathrm{CH}=$ Double precision array, input.
Routines Called	: WMB
	UNCLE.

```
SUBROUTINE ASDLIM(AV,SD,AN,BCLA,UCLA,BCLS,UCLS)
Purpose : Calculate 95% confidence limits for the mean and
    for the standard deviation, for a sample of size
    AN, with mean AV and unbiassed standard deviation
    SD.
Usage : CALL ASDLIM(AV,SD,AN,BCLA,UCLA,BCLS,UCLS)
Action : If AN \leqslantl, BCLA=UCLA=BCLS=UCLS=0
    If AN>l, BCLA=Lower 95% confidence limit for mean
                    UCLA=Upper 95% confidence limit for mean
                    BCLS=Lower 95% confidence limit for S.D.
                    UCLS=Upper 95% confidence limit for S.D.
    For AN < 8
            all confidence limits are found using table
                look-up techniques.
            For AN > 8
            confidence limits for the mean are calculated
                using an approximation for the "t"
                distribution
            (Ref: Gardiner and Bombay, Technometrics,
                Vol.7, 1965, pp.71,72)
            Confidence limits for the S.D. are calculated
            using an approximation to the X X
            distribution
            (See Annals of Mathematical Statistics,
            Vol.17, 1946, p.220)
Arguments : AV=Real,input
            SD=Real,input
            AN=Real,input
            BCLA=Real,output
            UCLA=Real,output
            BCLS=Real,output
            UCLS=Real,output
```

SUBROUTINE AVLIM(AV,SD,BN,UCL,BCL)
Purpose : Calculate 95% confidence limits for a sample
with mean $A V$, unbiassed standard deviation
SD, based on $B N$ observations, and using an
approximation for "t" distribution.
(Ref: Gardiner and Bombay, Technometrics, Vol. 7,
1965, pp.71,72)
Usage : CALL AVLIM (AV,SD,BN,UCL,BCL)
Action : UCL = the upper confidence limit.
BCL = the lower confidence limit.
Arguments : AV = Real, input
SD = Real, input
BN = Real, input
UCL = Real, output
BCL = Real, output
Routines Called : none.

```

SUBROUTINE CHISQ (Y, NDFK, P)
Purpose : Calculation of inverse Chi Square. Given the
probability \(P\) and degrees of freedom NDFK,
the subroutine calculates the corresponding

Chi Square deviate.

Usage : CALL CHISQ (Y, \(\mathrm{NDFK}_{8} \mathrm{P}\) )

Arguments : NDFK = Integer, input \(\mathrm{P}=\) Real, input
\(\mathrm{Y}=\) Real, output

Accuracy : For probabilities between . 001 and . 999 and any number of degrees of freedom, the subroutine is accurate to at least 2 decimal places.

Routines Called : FNORM
ALOG
SQRT

SUBROUTINE CONR(R,T,UCL,BCL)


Arguments \(\quad\)\begin{tabular}{rl}
\(: \quad \mathrm{R}\) & \(=\) Real, input \\
T & \(=\) Real, input \\
UCL & \(=\) Real, output \\
\(B C L\) & \(=\) Real, output
\end{tabular}

Routines Called: ALOG
EXP
SQRT

SUBROUTINE DBN (DB, X, F)
\begin{tabular}{|c|c|}
\hline Purpose & : To form a smoothed frequency distribution. Integer values are assumed evenly spread over a unit interval, and when the unit interval overlaps a category boundary the adjacent categories are credited with the corresponding fraction of the interval. This results in non-integral frequencies. \\
\hline Usage & \[
\text { : CALL } \begin{aligned}
\mathrm{DBN} & (\mathrm{DB}, \mathrm{X}, \mathrm{~F}) \\
\mathrm{DB}= & \text { Array for the frequency distribution. } \\
\mathrm{X}= & \text { Value to be categorised. } \\
\mathrm{F}= & ((\text { Maximum value on New Scale +1)/ } \\
& (\text { Maximum value on Old Scale +1)) }
\end{aligned}
\] \\
\hline Arguments & \[
\begin{aligned}
\mathrm{DB} & =\text { Real array, input and output } \\
\mathrm{X} & =\text { Real, input } \\
\mathrm{F} & =\text { Real, input }
\end{aligned}
\] \\
\hline Restrictions & \begin{tabular}{l}
: X must be positive and integral. \\
If \(F\) is greater than or equal to \(l, X\) is left in its original grouping. \\
The DB Array in the calling program must have a dimension of at least 'Maximum value on New Scale +l'. This allows for zero scores.
\end{tabular} \\
\hline Routines Cal & No \\
\hline
\end{tabular}

FUNCTION FNORM ( \(\mathrm{P}, \mathrm{A}, \mathrm{S}\) )

Purpose : Given the mean, \(A\), the standard deviation, \(S\), and the area under the Normal curve, P , solve for X , the Normal deviate,
the equation, \(P=\int_{-\infty}^{X} \frac{1}{\sqrt{2 \pi S^{2}}} e^{-\frac{1}{2}\left[\left(\frac{x-A}{S}\right)^{2}\right] d x}\)
using the approximation given by Hastings in
"Approximations for Digital Computers", on page 192. The maximum error is about . 00045 standard deviations.

```

SUBROUTINE HIST (D, IE)
Purpose : To print a histogram
Usage : HIST (D, IE)
where D = a unidimensional array with values
to be plotted.
(the values need not be integers,
but must be in floating point).
IE = number of elements in D, (including O)
Arguments : D = Real, input
IE = Integer, input
Routines Called : None.

```
```

SUBROUTINE INSLD (S, NORDS, R, NRANK, D)
Purpose : Invert a matrix S of order NORDS and, optionally,
compute stepwise log determinants.
Action : R = Inverse of S unless S is singular, when
R is the conditional inverse.
R (NORDS*(NORDS + I)/2+1) onwards (i.e.
directly after the half symmetric inverse),
is used as working space for storing scale
factors.
R = S is permissible.
D is a vector of NORDS stepwise log determinants.
If NRANK on entry
= -l, stepwise log determinants only are
calculated
= -2, inverse only is calculated
= O, both are calculated.
NRANK on exit is the rank of S. (>0)
Usage : CALL INSLD(S,NORDS,R,NRANK, D)
Arguments : S = Real array \& input
NORDS = Integer, input
R = Real array, output
NRANK = Integer, input and output
D = Real array, output.
Restrictions : R and S must be half symmetric in a unidimensional
array. If the matrix is not positive definite or
semidefinite the subroutine may break down. To
allow for working space, the dimension of R
must be at least NORDS x (NORDS +3)/2.
Routines Called : ISYM
SQRT.

```
```

SUBROUTINE MOUT(A,LA,NRA,NCA,RNAM, CNAM,NFORM)
Purpose : Print an NRA x NCA matrix A.
Usage : CALL MOUT(A,LA,NRA,NCA,RNAM,CNAM,NFORM)
Action : If LA = l, A is stored in core as a half-
symmetric matrix
\not=1, A is a full matrix:
If NFORM = O, output format is 8E14.7
= 1, output format is 8F14.4
RNAM = Row names
CNAM = Column names
The same rules as those applying to
RH and CH in subroutine WMB are used.
Arguments : A = Real array, input
LA = Integer, input
NRA = Integer, input
NCA = Integer, input
RNAM = Double precision array, input
CNAM = Double precision array, input
NFORM = Integer, input.
Routines Called : [NFRVN
INFCVN

```

FUNCTION MRSIG (R,N,IND)
\begin{tabular}{|c|c|}
\hline Purpose & : Test whether a multiple correlation coefficient, \(R\), based on N cases and IND independent variables is significantly different from 0 at the \(95 \%\) level, print a message and leave MRSIG \(=1\) or 0 , depending on whether \(R\) is significant or not. \\
\hline Usage & : ISSIG \(=\) MRSIG(R,N,IND) \\
\hline Arguments & : \(\mathrm{R}=\) Real, input \\
\hline & \(N=\) Integer, input \\
\hline & IND \(=\) Integer, input. \\
\hline
\end{tabular}

Routines Called: TANH
SQRT
3) ENTRY DRAW ( \(\mathrm{X}, \mathrm{Y}, \mathrm{N}, \mathrm{K}, \mathrm{J}, \mathrm{L}\) )

Action : Plots a series of points whose co-ordinates are taken from the \(X\) and \(Y\) arrays. This can be done either by placing a specified symbol at each of the points required, or by joining successive points from the arrays by a line, or by combining the \(t w o\) methods i.e. using a line and symbols.

Usage : CALL DRAW ( \(\mathrm{X}, \mathrm{Y}, \mathrm{N}, \mathrm{K}, \mathrm{J}, \mathrm{L}\) )

Arguments : X - Array of \(X\)-values
Y - Array of Y-values
N - No. of points to be plotted
K - Increment for choosing successive points from arrays

J - Indicates method of plotting required
\(\mathrm{J}=0\), points joined by a line
\(\mathrm{J}=1\), points joined by a line, and a symbol at all data points
\(\mathrm{J}=2\), points joined by a line, and a symbol at every second data point.

ETC.
\(\mathrm{J}=-\mathrm{N}\), a symbol produced at every Nth data point, lines between them suppressed.

L - Code for symbol to be used. (See Plotter
codes on page B52.A. One of the first
thirteen symbols may be used.)

All arguments input
Real arrays - X,Y
Integer - N, K, J, L
4) ENTRY LABEL ( \(T, N T\) )

Action : Labels output with the title in array T. The label is written below the graph, parallel to the \(X\)-axis, and the printing is lined up to start where the \(X\)-axis starts.
\begin{tabular}{|c|c|c|}
\hline Usage & & CALL LABEL (T, NT) \\
\hline Arguments & & \begin{tabular}{l}
T-Array of characters for label (Real array, input) \\
NT- No. of characters in array \(T\) (Integer, input)
\end{tabular} \\
\hline \multicolumn{3}{|l|}{5) ENTRY NEXT} \\
\hline Action & & Feeds paper to the end of the current plot and resets the reference point in preparation for the next graph. \\
\hline Usage & & CALL NEXT \\
\hline \multicolumn{3}{|l|}{6) ENTRY CLOSE (I)} \\
\hline Action & & Feeds paper to the end of the current plot and writes the time, date and jobname parallel to the y -axis. \\
\hline Usage & & CALL CLOSE(I) \\
\hline Argument & & \begin{tabular}{l}
I - Indicates mode of call (Integer, input) \\
\(I=0\), Normal mode of call \\
\(I=1\), 'NEXT' has been called just prior to this call and so feeding of paper is to be suppressed.
\end{tabular} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
Routines Called : The following installation supplied routines are called: \\
PLOTS, PLOT, SCALE, AXIS, LINE, LABEL, SYMBOL, PLOTT.
\end{tabular}} \\
\hline
\end{tabular}

SUBROUTINE PRNTR (ARRAY, NVARS, NAR, NRODIM, AA)

Purpose : Prints several arrays in succeeding lines.

Usage : CALL PRNTR (ARRAY, NVARS, NAR, NRODIM, AA) where ARRAY \(=\) two-dimensional array in which each column represents one of the arrays being printed.

NVARS = the number of variables or items in each single array.
\(N A R=\) the number of single arrays. NRODIM \(=\) the size of a single array as given in the dimension statement for the calling programme.
\(A A=a n\) array for storing the headers for the single arrays.

The output format is (A8, X, 12F9.3)
Note : The calling programme will require an equivalence statement making the single arrays columns of the complete array。 e。g. EQUIVALENCE (AVE(l), ARRAY (l, I)), (SDS \((1), \operatorname{ARRAY}(1,2))\)
```

Arguments : ARRAY = Real 2-dimensional array, input
NVARS = Integer, input
NAR = Integer, input
NRODIM = Integer, input
AA = REAI*\& array, input

```
Routines Called : None.

Note
: A new entry, PRNTRK, allowing a choice of the source from which variable names are to be taken, has been added to the subroutine. See Page B7O.A

```

SUBROUTINE PSYM(NDS,RXY)
Purpose : Print a half-symmetric matrix RXY in fixed
format F6.2 taking row names from the data
set numbered NDS.
Usage : CALL PSYM(NDS,RXY)
Arguments : NDS = Integer, input
RXY = Real array, input
Restrictions : Data set numbered NDS must have been opened.
Routines Called : None.
Note : A new entry, PSYMK, allowing a choice of the
source from which variable names are to be taken,
has been added.
See Page B70.A

```

These three subroutines have been modified to include additional entry points
```

PRNTRK(ARRAY,NV,NAR,NRODIM,AA,NAMES),
PSAMK(NV,RXY,J ,NAMES),
PSYMK(NV,RXY,NAMES), respectively.

```
Purpose : Allows for greater flexibility with regard to
                    the source from which the variable names
                    printed for the arrays are taken.

                                    set \(N\) (where \(N\) is a small posi-
                                    tive no.)
                                    -N - Take names from columns of data
                                    set \(N\)
                                    O.ODO - Generate integer variable names
            otherwise - NV variable names should be
                    taken from the array NAMES

Note : that for PSAMK and PSYMK, NV is the number of variables to be printed and not a data set no. as NDS is in PSAM and PSYM.

Arguments : NAMBS - Double precision array, input
NV - Integer, input

\(\begin{aligned} \text { All other arguments are the same as for the } \\ \text { original subroutines. }\end{aligned}\)
Routines Called: Addition of the entries means that the follow-
ing routines are now called by the original
subroutines, as well as by the entries:

```

SUBROUTINE SDLIM(VAR,TN,UCL,BCL)
Purpose : Compute 95% Confidence Limits for the standard
deviation, given the variance VAR, from a
sample of size TN using an approximation to the
\chi}\mp@subsup{}{}{2}\mathrm{ distribution.
(See Annals of Mathematical Statistics, vol. 17,
1946, p.220)
Usage : CALL SDLIM(VAR,TN,UCL,BCL)
Action: If TN<l, UCL = BCL = 0
If TN \geqslantl, UCL = the Upper 95% Confidence Limit
BCL = the Lower 95% Confidence Limit
Arguments : VAR = Real, input
TN = Real, input
UCL = Real, output
BCL = Real, output
Routines Called : SQRT.

```
\begin{tabular}{|c|c|}
\hline SUBROUPINE & SELECT(KSLECT, I, NSLECT, NAMES, NN \()\) \\
\hline Purpose & \begin{tabular}{l}
: Used primarily when selection of variables for an output data set is required, the subroutine determines the identities of the variables to be selected. \\
It builds up an array, KSLECT, of I items (Variable Numbers), derived from parameter cards listing the variables required (by name or by position number).
\end{tabular} \\
\hline Usage & \begin{tabular}{l}
: REAL* 8 NAMES(500) \\
CALL SELECT(KSLECT, I, \(\mathrm{NSLECT}_{9} \mathrm{NAMES}_{8} \mathrm{NN}\) )
\end{tabular} \\
\hline Action & : KSLECT \(=\) An array containing the position nos. of the variables to be selected. It is built up by the subroutine on the basis of information read by the subroutine from variable specification cards. \\
\hline & \begin{tabular}{l}
I = Number of items required in KSLECT. \\
NSLECT = A parameter indicating whether variables are specified by position no. (NSLECT=1) or by name ( \(\mathrm{NSLECT}=2\) ) on the variable specification cards.
\end{tabular} \\
\hline & NAMES = A double precision array of variable names used when required variables are specified by name. In order to determine the position nos. of the variables to be selected their names are compared with the names in this array. When a match is found the position no. of the name in array NAMES is entered as the position no. of the relevant variable in array KSLECT. \\
\hline
\end{tabular}
\(\mathrm{NN} \quad=\) Number of names in array NAMES.

The variable specification cards have the following format:
1. If variables are specified by position no. (i.e. NSLECT=1)

COLS l-3 lst field - Identity no. of lst var. to be selected 4-6 2nd field - Identity no. of 2nd var. to be selected etc. The end of the selection cards is indicated by a card with 999 in Cols. l-3. If a set of consecutive variables is to be selected, give the first, followed by 0 in the next field, then the last.
2. If variables are specified by name (i.e. NSLECT=2)

COLS 1 - May be used for card number 2-9 - Name of lst variable to be selected 10 - Blank (or Minus, see below) 11-18 = Name of 2nd variable to be selected etc.

End of selection cards indicated by a card with ENDSELEC in Cols. 2-9.

If a set of consecutive variables is to be selected, give the first and then the last, and put a minus in the column separating them (which would otherwise be blank).

Note : (l) When consecutive variables are specified the first and last variables must be on the same card.
(2) Variable specification cards need not be filled. The subroutine will take a new card if two consecutive O's (for NSLECT=1)
or a blank space (for NSLECT=2) are encountered.
```

Arguments : KSLECT - Integer array, output
I - Integer, input
NSLECT - Integer, input
NAMES - Double precision array, input
NN - Integer, input

```
Routines Called : UNCLE。
```

SUBROUTINE SIGLV(X,SIG)
Purpose : Compute the One-Tailed Significance level
of a Normal deviate using
Hasting's Approximation. (See Approximations
for Digital Computers : Hastings, 2nd Printing,
1957, p. 186).
Usage : CALL SIGLV(X,SIG)
Action : Uses X = The Normal deviate.
Supplies SIG = Area under Normal curve from X
to infinity.
Arguments : X = Real, input
SIG = Real, output.
Routines Called: None.

```

SUBROUTINE SIGR(NDS,RXY,NC)
\begin{tabular}{|c|c|c|}
\hline Purpose & & Mark the correlations significant at the \(5 \%\) level in a correlation matrix. \\
\hline Usage & : & CALL SIGR(NDS,RXY,NC) \\
\hline \multirow[t]{5}{*}{Action} & : & Uses: \\
\hline & & RXY = Correlation matrix in half-symmetric form. \\
\hline & & \[
\begin{aligned}
\mathrm{NC}= & \text { Number of cases used in calculating the } \\
& \text { correlation matrix. }
\end{aligned}
\] \\
\hline & & NDS = Number of the data set from which row names(variable names) are to be taken. \\
\hline & & The matrix RXY is printed with the correlations replaced by '+', '-' or 'O' to show positive or negative significant or non-significant correlation. \\
\hline Arguments & : & NDS = Integer, input \\
\hline & & RXY = Real array, input \\
\hline & & \\
\hline
\end{tabular}

Routines Called : PSAM.

\section*{SUBROUTINE STACHI(C,D,P)}
```

Purpose : Compute the Significance of a X X (Chi-Square),
using an approximate formula from N.C. Severo
and M. Zelen, Biometrika, 47,(1960), pages 4ll-416.
Usage : CALL STACHI (C,D,P):
Action : Uses:
C = Value of X2 (Chi-Square).
D = Number of degrees of freedom
Gives:
If D\leqslantO, P = 1.0
>O; P = Significance of X X (Chi-Square)
Arguments : C = Real, input
D = Real, input
P = Real, output

```

Routines Called : SIGLV.

SUBROUTINE WILH (F, DI, D2, SIG)


Routines Called : SIGLV.
V. Revised List of Package UNCLE error messages:-
\begin{tabular}{|c|c|c|}
\hline No. & Routines & Meaning \\
\hline 1.00 & CLSALL & \\
\hline 4.00 & EBCDIC & \\
\hline 9.00 & INFCN & \\
\hline 9.01 & & NDS out of range \\
\hline 9.02 & & Column names not available \\
\hline 10.00 & INFCVN & \\
\hline 10.01 & & Column names not available \\
\hline 10.02 & & NDS out of range \\
\hline 12.00 & IN & \\
\hline 12.01 & & NDS out of range \\
\hline 12.02 & & NDS already open \\
\hline 12.03 & & IP differs on re-reading a data set \\
\hline 12.04 & & End-of-file or error in reading headers \\
\hline 12.05 & & File identification incorrect \\
\hline 13.00 & INFIP & \\
\hline 13.01 & & NDS is output file \\
\hline 13.02 & & NDS is not opened \\
\hline 13.03 & & NDS is out of range \\
\hline 15.00 & INFNV & \\
\hline 15.01 & & File not opened \\
\hline 15.02 & & NDS out of range \\
\hline 16.00 & INFRN & \\
\hline 16.01 & - & File not opened \\
\hline 16.02 & & NDS out of range \\
\hline 17.00 & INFRVN & \\
\hline 17.01 & & NDS less than 0 \\
\hline 17.02 & & NDS out of range \\
\hline 30.00 & OUT & \\
\hline 30.01 & & NDS out of range \\
\hline 30.03 & & Negative or zero no. of variables in IP array \\
\hline 30.04 & & Row names to be copied but information not available \\
\hline 30.05 & & NDS already open. \\
\hline
\end{tabular}

List of Package UNCLE error messages (continued): \(=\)
32.00 RD
32.01
32.02
32.03
32.05
32.06
32.07
33.00
33.01
33.02
33.03
33.04
33.06

RMB
39.00 TAG
42.00 WD,WDI
42.01
42.02
42.03
43.00
43.00
43.01
43.02
44.00

WMB
44.00
\(45.00 \quad\) WMBF
46.00

CLSINP
46.01
48.00

INFNC
48.01
48.02
51.00 MISS
53.00 RDFS
34.00 RMBF

CLSIN

File closed
File not opened File open for output

Premature end-of-file
Permanent read error
NDS out of range

LA too large
Premature end-of-file in reading user specified H.S. matrix
Premature end-of-file in reading diagonal to half-symmetric conversion IP(2) Parameter gives incorrect no. of cases. (No. is too small)

Attempt to form diagonal matrix from rectangular matrix of unacceptable dimensions

Data set was not completely read
NDS out of range
NDS opened for input
File not opened

NDS negative
NDS too large
File not opened, or file opened for input

NDS negative

File not opened
NDS out of range

List of Package UNCLE error messages (continued):-
\begin{tabular}{lll}
54.00 & INTERP & \\
61.00 & INICM & \\
62.00 & GETCM & \\
62.01 & & Illegal branches \\
62.02 & & No more space in COMMON \\
63.00 & FREECM & \\
63.01 & & Area to be freed overlaps area already \\
& & \begin{tabular}{l} 
free, or extends beyond COMMON
\end{tabular} \\
63.02 & & Impossible branches \\
63.03 & & Area to be freed is below dynamic area, \\
& & or negative length of area \\
67.00 & INFJOB & \\
72.00 & INOUT & \\
72.01 & & NDS out of range \\
72.02 & & IP differs opened re-reading a data set \\
72.03 & & Fnd-of-file or error in reading headers \\
72.04 & & IP(l) not equal to no. of variables \\
72.05 & & expected \\
72.06 & & End-of-file or error in reading \\
72.07 & & preliminary cases.
\end{tabular}

,
```

