
Journal Pre-proofs

Implications of covariate induced test dependence on the diagnostic accuracy
of latent class analysis in pulmonary tuberculosis

Alfred Kipyegon Keter, Lutgarde Lynen, Alastair Van Heerden, Els
Goetghebeur, Bart K.M. Jacobs

PII: S2405-5794(22)00036-5
DOI: https://doi.org/10.1016/j.jctube.2022.100331
Reference: JCTUBE 100331

To appear in: Journal of Clinical Tuberculosis and Other Myco‐
bacterial Diseases

Received Date: 4 June 2022
Revised Date: 29 August 2022
Accepted Date: 31 August 2022

Please cite this article as: A. Kipyegon Keter, L. Lynen, A. Van Heerden, E. Goetghebeur, B.K.M. Jacobs,
Implications of covariate induced test dependence on the diagnostic accuracy of latent class analysis in
pulmonary tuberculosis, Journal of Clinical Tuberculosis and Other Mycobacterial Diseases (2022), doi: https://
doi.org/10.1016/j.jctube.2022.100331

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover
page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version
will undergo additional copyediting, typesetting and review before it is published in its final form, but we are
providing this version to give early visibility of the article. Please note that, during the production process, errors
may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Ltd.

https://doi.org/10.1016/j.jctube.2022.100331
https://doi.org/10.1016/j.jctube.2022.100331
https://doi.org/10.1016/j.jctube.2022.100331


1

1 Implications of covariate induced test dependence on the diagnostic accuracy of latent class analysis in 
2 pulmonary tuberculosis

3 Alfred Kipyegon Ketera b d 1, Lutgarde Lynena 2, Alastair Van Heerdenb c 3, Els Goetghebeurd 4, Bart K.M. Jacobsa 5

4 a Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Nationalestraat 155 – 2000 Antwerp, 
5 Belgium, 1 aketer@ext.itg.be, 2 llynen@itg.be, 5 bkjacobs@itg.be
6 b Centre for Community Based Research, Human Sciences Research Council, Sweetwaters, Bus Depot, 
7 Pietermaritzburg, 3201, South Africa
8 c MRC/WITS Developmental Pathways for Health Research Unit, Department of Paediatrics, Faculty of Health 
9 Science, University of the Witwatersrand, 7 York Rd, Parktown, Johannesburg, 2193, South Africa, 

10 3 avanheerden@hsrc.ac.za
11 d Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Krijgslaan 281, Building 
12 S9, 9000 Ghent, Belgium, 4 Els.Goetghebeur@UGent.be
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47 Corresponding Author
48 Alfred Kipyegon Keter
49 Institute of Tropical Medicine Antwerp
50 Nationalestraat 155 – 2000 Antwerp, 
51 Belgium
52 E-mail: aketer@ext.itg.be 
53 Cell phone: +254 722 792 928, +32 479 266 262

mailto:aketer@ext.itg.be
mailto:llynen@itg.be
mailto:bkjacobs@itg.be
mailto:avanheerden@hsrc.ac.za
mailto:Els.Goetghebeur@UGent.be
mailto:aketer@ext.itg.be


2

55 Abstract

56 Background In application studies of latent class analysis (LCA) evaluating imperfect diagnostic tests, residual 

57 dependence among the diagnostic tests still remain even after conditioning on the true disease status due to 

58 measured variables known to affect prevalence and/or alter diagnostic test accuracy. Presence of severe 

59 comorbidities such as HIV in pulmonary tuberculosis (PTB) diagnosis alter the prevalence of PTB and affect the 

60 diagnostic performance of the available imperfect tests in use. This violates two key assumptions of LCA: (1) that 

61 the diagnostic tests are independent conditional on the true disease status (2) that the sensitivity and specificity 

62 remain constant across subpopulations. This leads to incorrect inferences. 

63 Methods Through simulation we examined implications of likely model violations on estimation of prevalence, 

64 sensitivity and specificity among passive case-finding presumptive PTB patients with or without HIV. Jointly 

65 conditioning on PTB and HIV, we generated independent results for five diagnostic tests and analyzed using 

66 Bayesian LCA with Probit regression, separately for sets of five and three diagnostic tests using four working 

67 models allowing: (1) constant PTB prevalence and diagnostic accuracy (2) varying PTB prevalence but constant 

68 diagnostic accuracy (3) constant PTB prevalence but varying diagnostic accuracy (4) varying PTB prevalence and 

69 diagnostic accuracy across HIV subpopulations. Vague Gaussian priors with mean 1 and unknown variance were 

70 assigned to the model parameters with unknown variance assigned Inverse Gamma prior. 

71 Results Models accounting for heterogeneity in diagnostic accuracy produced consistent estimates while the model 

72 ignoring it produces biased estimates. The model ignoring heterogeneity in PTB prevalence only is less problematic. 

73 With five diagnostic tests, the model assuming homogenous population is robust to violation of the assumptions. 

74 Conclusion Well-chosen covariate-specific adaptations of the model can avoid bias implied by recognized 

75 heterogeneity in PTB patient populations generating otherwise dependent test results in LCA.

76 Key words: Sensitivity, Specificity, Prevalence, Tuberculosis, Simulation, Bayesian Latent Class Analysis

77
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78 1. Introduction

79 Lack of a perfect reference standard complicates evaluation of new diagnostic tests and quantification of disease 

80 prevalence. Ideally, new diagnostic tests are evaluated by comparison to a gold standard (GS) test that conclusively 

81 determines the diagnosis. However, in practice, the GS test is rarely available. As a result, new diagnostic tests are 

82 assessed by comparison to available imperfect reference tests. Due to the inherent limitation of imperfect reference 

83 tests, discrepant resolution and composite reference standard methods were proposed to alleviate imperfect reference 

84 standard bias.[1] Both methods, however, yield biased estimates.[2–4] Another promising approach is the use of 

85 latent class analysis (LCA).[5–7] This approach is used for identifying unobserved subgroups in the population. [8] 

86 It has enjoyed extensive application in many disciplines. [9] Over the past few decades, it has attracted attention in 

87 biomedical field, including evaluation of diagnostic tests in the absence of a gold standard in the field of infectious 

88 disease. [9,10]

89 Consider, for example, the diagnosis of pulmonary tuberculosis (PTB). The current conventional diagnostic methods 

90 for PTB involve culture, smear microscopy, Xpert MTB/RIF, Xpert MTB/RIF Ultra, and imaging (chest X-ray, 

91 Computed Tomography) in a patient with presumptive TB. Recently, Computer-Aided Detection for TB (CAD4TB) 

92 and C-reactive protein (CRP) were proposed as triage tests in presumptive TB patients before ordering an expensive 

93 but more accurate Xpert MTB/RIF.[11] Lateral Flow test for lipoarabinomannan (LAM) in urine is recommended 

94 for diagnosis of TB in patients with advanced HIV disease.[12–14] The conventional reference standard for 

95 diagnosis of PTB is culture for Mycobacterium tuberculosis complex. While culture is the most specific test 

96 available, an imperfect sensitivity (76%–92%) is a limitation.[15] Thus, a negative culture test result does not rule 

97 out the presence of TB. PTB diagnosis could use as few as two symptoms/tests e.g. `cough lasting more than two 

98 weeks and chest X-ray’ or `any TB symptom and chest X-ray’, to more elaborate combinations of three e.g. `any TB 

99 symptom, chest X-ray and Xpert MTB/RIF’ or four e.g. adding culture to the set.[16] In this context we consider 

100 any TB symptom as a diagnostic test. A combination of tests that does not include TB symptoms in the set has also 

101 been considered.[17] Using a combination of imperfect diagnostic tests as the reference standard  will potentially 

102 lead to biased estimates.[18] Composite reference standard (CRS) does not take into account the underlying 

103 uncertainties attributable to each imperfect test while assessing the diagnostic accuracy of the new test. A detailed 

104 discussion on the concerns of CRS has been provided elsewhere.[4] Alternatively, with such a set of test results 

105 jointly available for a sample of patients, LCA allows not only for improved patient diagnosis but further allows 
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106 evaluation of the diagnostic tests themselves. It yields correct estimates of disease prevalence and diagnostic test 

107 accuracy under nontrivial assumptions.[19] These strong assumptions are violated when a serious comorbidity 

108 affects the diagnostic test accuracy and/or risk of the targeted disease. This then results in biased estimates of disease 

109 prevalence and diagnostic test accuracy. [3,20–22] However, there is scanty evidence on the performance of latent 

110 class models in the presence of differential diagnostic test accuracy induced by an observed external covariate that is 

111 also associated with the risk of the targeted disease. 

112 Previous authors in their work have adjusted for covariates known to influence diagnostic test accuracy based on 

113 expert opinion, [22,23] some did not adjust for covariates [24] while others adjust for the effect of covariates on 

114 disease prevalence only. [5,6,21] Thus, the differing approaches on how to conduct LCA leaves an important gap in 

115 diagnostic test evaluation, especially in TB where factors such as HIV status, history of TB and malnutrition affect 

116 the performance of Xpert MTB/RIF, TB symptoms and tuberculin skin test among others. [16,22,25] It is unclear 

117 whether studies that fail to adjust for measured covariates as well as those that partly adjust for the effects of 

118 measured covariates on diagnostic test accuracy only yield biased estimates while those that correctly adjust for the 

119 effect of measured covariates have a better chance of obtaining correct inferences. Using simulation, we performed 

120 Bayesian LCA separately for a set of three (any PTB symptom, CAD4TB, Xpert MTB/RIF) and a set of five 

121 diagnostic tests (any PTB symptom, CRP, CAD4TB, Xpert MTB/RIF and culture) for PTB with the aim of 

122 assessing the impact of covariate induced diagnostic test dependence on the performance of latent class models. We 

123 evaluated the likelihood of four proposed models, representing common situations under which the standard 

124 assumptions are violated for a set of three and a set of five diagnostic tests and offer recommendations for analysis.

125

126 2. Simulation conditions: The generated data

127 We generated data mimicking a setting of passive case-finding among presumptive PTB patients with or without 

128 HIV. Our goal is to show the effect of residual dependence induced by a measured covariate on the diagnostic 

129 performance of LCA after conditioning on the true PTB status and isolating the dependence between the diagnostic 

130 tests attributable to other sources. Based on realistic sensitivities and specificities of five diagnostic tests for PTB 

131 (any PTB symptom, CRP, CAD4TB, Xpert MTB/RIF and culture) we simulated independent test results conditional 

132 on PTB and HIV (Table A.1 in Appendix A). We thus simulated 20% HIV+ patients with 5% PTB prevalence in 
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133 HIV- and 10% in HIV+, for an overall prevalence of 6%.[26,27] The accuracy used for culture was based on a 

134 composite reference standard of BACTEC 960/MGIT, BACTEC 460 and solid media [15] For the other diagnostic 

135 tests it was based on culture as the reference standard. The overall sensitivity (specificity) averages the test-related 

136 sensitivity (specificity) over the HIV subpopulations. Thus, the joint probability of the  diagnostic test𝑗𝑡ℎ  𝑌𝑗, 𝑗 =

137 , PTB status  and covariate (HIV status)  was generated using the following model 1, 2, 3, …, 𝐽 𝐷 𝑋

138 𝑃𝑟(𝑌𝑗, 𝐷,𝑋) = 𝑃𝑟(𝑌𝑗│𝐷,𝑋)𝑃𝑟(𝐷│𝑋)𝑃𝑟(𝑋)

139 Hence for the set of test results under conditional independence given D and X: 

140 𝑃𝑟(𝑌1,𝑌2,…,𝑌𝐽,𝐷,𝑋) =   
𝐽

∏
𝑗 = 1

𝑃𝑟(𝑌𝑗│𝐷,𝑋)𝑃𝑟(𝐷│𝑋)𝑃𝑟(𝑋)

141 Where  , 0 otherwise; , 0 otherwise;  𝑌𝑗 = 1 if the 𝑗𝑡ℎ test result is positive 𝐷 = 1 if the latent PTB status is positive

142 , 0 otherwise.𝑋 = 1 if HIV status is positive (i.e HIV + )

143 We introduced the observed covariate  in the relevant models to handle dependence of diagnostic tests induced by 𝑋

144 this covariate.

145 We thus generated three pseudo-random populations of 1000, 2000 and 5000 individuals with their true PTB and 

146 HIV status. Each of the three pseudo-random populations were replicated 100 times. The covariance and correlation 

147 structures are presented in Appendix A (Tables A.2–A.5).

148

149 3. Working Models

150 The standard two-class LCA assumes that the study population consists of at least two separate, internally 

151 homogenous latent classes. We consider a person’s true PTB status consisting of two mutually exclusive and 

152 exhaustive categories: ‘PTB’ and ‘non-PTB’. We acknowledge that this may not be true in practice because PTB 

153 status for an individual may be any of (1) active-TB (2) no TB (3) latent/subclinical TB. [28] However, we restrict 

154 ourselves to the case where we have two classes: PTB and non-PTB, for the purpose of assessing violation of model 

155 assumptions. The model further assumes that the result of one diagnostic test does not depend on the results of other 

156 tests (and persons) in the latent class, with a constant chance of error across individuals in a latent class, implying 

157 constant test sensitivity and specificity across subpopulations.[5] In practice, these standard latent class model 
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158 assumptions are violated, especially in the field of TB where, for example, HIV disease is known to influence the 

159 performance of some diagnostic tests including TB symptoms and Xpert MTB/RIF. To assess the effect of the 

160 measured covariate on the performance of latent class analysis, we analyzed the data using four working models: 

161 from most simple - with no HIV dependence - to the accurate (or complex) model representing the true model used 

162 to generate the data (Figure 1). These are variants of the standard two-class latent class model. Their detailed 

163 description is given in Appendix A.

164

165 Figure 1: Graphical presentation of the working models

166
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167 The joint probability  of observing a 𝑃𝑟(𝑌𝑖1 = 𝑦𝑖1,𝑌𝑖2 = 𝑦𝑖2,𝑌𝑖3 = 𝑦𝑖3, …, 𝑌𝑖𝐽 = 𝑦𝑖𝐽|𝑋𝑖 = 𝑥𝑖) = 𝑃𝑟(𝑌𝑖 = 𝒚𝒊|𝑋𝑖 = 𝑥𝑖)

168 combination of J test results  applied to the  individual, , was derived from the 𝑦𝑖1,𝑦𝑖2,𝑦𝑖3, …, 𝑦𝑖𝐽 𝑖𝑡ℎ  𝑖 = 1,2,3,…,𝑁

169 assumption of constant (or varying) PTB prevalence and diagnostic test accuracy across the HIV subpopulations as 

170 Model I: assuming independence of (Y, D) from X

171 𝑃𝑟(𝒚𝒊) =
𝑑 = 1

∑
𝑑 = 0

𝐽

∏
𝑗 = 1

𝑃𝑟(𝑌𝑖𝑗 = 𝑦𝑖𝑗│𝐷𝑖 = 𝑑)𝑃𝑟(𝐷𝑖 = 𝑑)

172 Model II: assuming 𝑃𝑟(𝑌𝑖𝑗 = 𝑦𝑖𝑗│𝐷𝑖 = 𝑑, 𝑋𝑖 = 𝑥𝑖) =  𝑃𝑟(𝑌𝑖𝑗 = 𝑦𝑖𝑗│𝐷𝑖 = 𝑑)

173 𝑃𝑟(𝒚𝒊|𝑋𝑖 = 𝑥𝑖) =
𝑑 = 1

∑
𝑑 = 0

𝐽

∏
𝑗 = 1

𝑃𝑟(𝑌𝑖𝑗 = 𝑦𝑖𝑗│𝐷𝑖 = 𝑑) 𝑃𝑟(𝐷𝑖 = 𝑑|𝑋𝑖 = 𝑥𝑖)

174 Model III: assuming 𝑃𝑟(𝐷𝑖 = 𝑑│𝑋𝑖 = 𝑥𝑖) =  𝑃𝑟(𝐷𝑖 = 𝑑)

175 𝑃𝑟(𝒚𝒊|𝑋𝑖 = 𝑥𝑖) =
𝑑 = 1

∑
𝑑 = 0

𝐽

∏
𝑗 = 1

𝑃𝑟(𝑌𝑖𝑗 = 𝑦𝑖𝑗│𝐷𝑖 = 𝑑, 𝑋𝑖 = 𝑥𝑖)𝑃𝑟(𝐷𝑖 = 𝑑)

176 Model IV

177 𝑃𝑟(𝒚𝒊|𝑋𝑖 = 𝑥𝑖) =
𝑑 = 1

∑
𝑑 = 0

𝐽

∏
𝑗 = 1

𝑃𝑟(𝑌𝑖𝑗 = 𝑦𝑖𝑗│𝐷𝑖 = 𝑑,𝑋𝑖 = 𝑥𝑖)𝑃𝑟(𝐷𝑖 = 𝑑│𝑋𝑖 = 𝑥𝑖)

178

179 4. Analysis

180 We implemented Bayesian LCA to evaluate diagnostic test properties of a set of five diagnostic tests: any PTB 

181 symptom, CAD4TB, CRP, Culture and Xpert MTB/RIF. A subset of any PTB symptom, CAD4TB and Xpert 

182 MTB/RIF were also evaluated. The number of parameters to be estimated for LCA with five diagnostic tests is less 

183 than the number estimable from the degrees of freedom in the data. Hence the data could support estimation of 

184 disease prevalence and diagnostic accuracy of the five diagnostic tests. With three diagnostic tests, however, there 

185 are more parameters than degrees of freedom in the data. This introduces a statistical non-identifiability problem 

186 unless additional information enters, for instance through informative prior distributions for some parameters.[8] 
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187 The dependence of sensitivity and specificity on the covariate was expressed through a Probit model. Similarly, for 

188 PTB prevalence.  (Appendix A). Independent Gaussian priors  with unknown variance 𝑁(𝜇, 𝜎2) 𝜎2~𝐼𝑛𝑣𝐺𝑎𝑚𝑚𝑎

189  were used to model the uncertainty in sensitivity and specificity as well as the PTB (𝑠ℎ𝑎𝑝𝑒 = 𝛼, 𝑟𝑎𝑡𝑒 = 𝛽)

190 prevalence. 

191 Amongst the HIV- (x=0), sensitivity and specificity were assigned a normal prior with mean of 1 on the Probit scale 

192 translating to 84% on the probability scale,  for the prevalence this was mean -1 on the Probit scale translating to 

193 16% on the probability scale. The difference in sensitivity and specificity and the difference in prevalence between 

194 the HIV- and HIV+ subpopulations were assigned priors from normal distributions with mean 0 and unknown 

195 variance. When evaluating five diagnostic tests, the variance parameters were assigned near-uninformative 

196  priors (Appendix A: Figures A.3–A.13). Given the identifiability issues when  𝐼𝑛𝑣𝐺𝑎𝑚𝑚𝑎(1·0 ―3,1·0 ―3)

197 evaluating three diagnostic tests, the variance parameters for prevalence, sensitivity and specificity were assigned 

198 informative  priors (Appendix A: Figures A.14–A.20). The variance parameters of the difference 𝐼𝑛𝑣𝐺𝑎𝑚𝑚𝑎(2, 3)

199 in prevalence and the difference in sensitivity and specificity between the HIV- and HIV+ were assigned priors from

200 . The values of the inverse Gamma distribution were chosen such that the variation in the estimate  𝐼𝑛𝑣𝐺𝑎𝑚𝑚𝑎(3, 1)

201 would span the range of plausible values for the parameter (Appendix A: Table A.6, Figures A.1 and A.2). Marginal 

202 sensitivity, specificity and prevalence were assigned priors similar to those of the HIV- subpopulation. Given the 

203 lack of a perfect reference standard, correct informative priors for the parameters of the model may not be readily 

204 known. Nonetheless, based on expert knowledge, using the most accurate imperfect reference standard a diagnostic 

205 test that is promising for diagnosis of a disease often has a sensitivity and a specificity >50%. Thus, we chose prior 

206 distributions for sensitivity and specificity with mode around 84% on the probability scale that reflected the degree 

207 of confidence in the performance of the diagnostic tests. The prior chosen for the prevalence was based on the 

208 general understanding about the prevalence of the disease spanning a range of plausible values in the population 

209 rather than knowledge of the actual estimate.

210 For each replicate dataset, we calculated the median of the posterior distribution of PTB prevalence, diagnostic test 

211 sensitivity and specificity as our point estimate with the corresponding 95% credible intervals (95% CrI), defined as 

212 2·5%–97·5% percentiles of the posterior distribution. For each combination of the four working models and three 

213 sample sizes, we calculated the median of the distribution of posterior median estimates of the one hundred replicate 
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214 datasets. The corresponding 2·5% and 97·5% percentiles of the distribution of the one hundred posterior median 

215 estimates were derived. These intervals were referred to as 95% reference intervals (95% RI). We also calculated the 

216 mean and the corresponding 95% confidence intervals (95% CI) as well as the root mean squared error (RMSE) 

217 from the distribution of the one hundred posterior median estimates. Using the lower and upper estimates of the 95% 

218 CrI for each posterior distribution of the one hundred replicate datasets we derived the coverage rates. Posterior 

219 inferences were based on 50000 Monte Carlo iterations with the first 25000 discarded as “burn-in”. Convergence in 

220 model fitting was assessed by running three chains. In order to reduce autocorrelation between consecutive values in 

221 the chain, every 10th iteration was saved ("thinning").[29] Trace plots and Gelman-Rubin convergence statistic 

222 <1·05 were used to monitor mixing in the chains.[30] Trace plots for the posterior samples of the parameters 

223 obtained from analysis of the first replicate dataset of size 1000, 2000 and 5000 using working model IV are 

224 provided in Appendix A (Figures A.21–A.22). Analysis was implemented in R version 4.0.3 using R2jags package 

225 for R version 4.0.3.[31,32]

226
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227 5. Simulation Results

228 5.1 Pulmonary TB prevalence

229 In Table 1 we present the frequentist evaluation of the posterior distributions of total population pulmonary TB 

230 (PTB) prevalence. True values as presented in Table 1 in this section and in the following sections refers to the 

231 actual values used in the simulation. We present the frequentist median with 95% reference intervals (95% RI), 

232 mean with 95% confidence intervals (95% CI) and the true value of the total population PTB prevalence for five and 

233 three diagnostic tests analyzed using the four working models. We also present the root mean squared error (RMSE) 

234 and coverage rates of the 95% credible intervals (95% CrI) around the median estimates of the posterior 

235 distributions. All estimates are based on the analysis of one hundred replicate datasets. From this point going 

236 forward we refer to the coverage rates of the 95% CrI around the median estimates of the posterior distributions as 

237 coverages of the 95% CrI.

238 When evaluating five diagnostic tests, the working models accounting for heterogeneity in  diagnostic test 

239 performance (working models III and IV) as well as the model assuming homogeneous population produced 

240 consistent estimates of the total population PTB prevalence. There was evidence of some systematic bias for smaller 

241 sample size. The model assuming heterogeneity in PTB prevalence but constant diagnostic accuracy across the 

242 subpopulations yielded systematically biased but consistent estimates of total population PTB prevalence.

243 In the evaluation of three diagnostic tests, working models I and II yielded systematically biased estimates of the 

244 total population PTB prevalence. Model II yielded large RMSE and poor coverages of 95% CrI. Working models III 

245 and IV yielded consistent estimates of total population PTB prevalence with modest systematic bias.

246



11

247 Table 1: Frequentist evaluation of Bayesian estimates of total population pulmonary tuberculosis (PTB) prevalence 
248 obtained using four working models in the analysis of five and three diagnostic test results

   Five diagnostic tests
Model N True value Median  (95% RI) Mean  (95% CI) RMSEx100 Coverage
I 1000 6·0 6·3 (4·4, 8·9) 6·4 (6·1, 6·6) 1·2 95·0
 2000 6·0 6·1 (5·0, 7·3) 6·1 (6·0, 6·2) 0·6 95·0
 5000 6·0 6·0 (5·2, 6·9) 6·9 (5·2, 8·6) 8·8 93·0
II 1000 6·0 7·3 (5·5, 10·6) 7·5 (7·1, 7·8) 2·3 81·0
 2000 6·0 6·5 (5·1, 7·9) 6·5 (6·4, 6·6) 0·8 90·0
 5000 6·0 6·2 (5·4, 6·9) 6·2 (6·1, 6·3) 0·4 93·0
III 1000 6·0 6·4 (4·4, 11·4) 6·6 (6·3, 6·9) 1·7 94·0
 2000 6·0 6·0 (4·7, 7·4) 6·0 (5·9, 6·1) 0·7 93·0
 5000 6·0 5·9 (5·2, 6·7) 5·9 (5·9, 6·0) 0·4 95·0
IV 1000 6·0 6·7 (4·7, 9·5) 6·8 (6·5, 7·1) 1·6 93·0
 2000 6·0 6·2 (4·8, 7·7) 6·3 (6·1, 6·4) 0·7 93·0
 5000 6·0 6·1 (5·3, 6·9) 6·1 (6·0, 6·2) 0·4 94·0

Three diagnostic tests
Model N True value Median  (95% RI) Mean  (95% CI) RMSEx100 Coverage
I 1000 6·0 5·7 (3·0, 16·2) 6·6 (5·9, 7·3) 3·4 96·0
 2000 6·0 6·1 (4·0, 13·1) 6·6 (6·2, 7·1) 2·4 98·0
 5000 6·0 6·7 (4·4, 12·7) 7·3 (6·8, 7·7) 2·4 94·0
II 1000 6·0 23·1 (7·0, 39·8) 23·4 (21·7, 25·1) 19·4 17·0
 2000 6·0 23·0 (14·6, 37·3) 24·0 (22·8, 25·2) 19·0 0·0
 5000 6·0 25·5 (18·7, 36·3) 26·1 (24·8, 27·4) 21·2 0·0
III 1000 6·0 4·9 (2·7, 12·9) 5·3 (4·8, 5·8) 2·5 94·0
 2000 6·0 5·0 (3·2, 8·5) 5·3 (5·0, 5·5) 1·6 98·0
 5000 6·0 5·6 (3·8, 10·5) 5·9 (5·6, 6·2) 1·6 92·0
IV 1000 6·0 5·1 (2·9, 15·2) 5·7 (5·1, 6·4) 3·2 96·0
 2000 6·0 5·4 (3·5, 8·0) 5·5 (5·2, 5·7) 1·3 99·0
 5000 6·0 5·6 (4·1, 8·2) 5·7 (5·4, 5·9) 1·2 95·0

249 N – Sample size 
250 RI – Reference Intervals and was calculated as the 2·5% and 97·5% percentiles of the distribution of median 
251 estimates of the posterior distributions from the one hundred replicate datasets
252 CI – Confidence Intervals
253 RMSE – Root Mean Square Error
254 Five diagnostic tests: any PTB symptom, CAD4TB, CRP, culture and Xpert MTB/RIF
255 Three diagnostic tests: any PTB symptom, CAD4TB and Xpert MTB/RIF
256 Model I – Model restricting PTB prevalence and the diagnostic test accuracy to remain constant across the HIV 
257 subpopulations
258 Model II – Model allowing PTB prevalence but not the diagnostic test accuracy to vary across the HIV 
259 subpopulations
260 Model III - Model restricting PTB prevalence but not the diagnostic test accuracy to remain constant across the HIV 
261 subpopulations
262 Model IV - Model allowing PTB prevalence and the diagnostic test accuracy to vary across the HIV subpopulations
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263 5.2 Sensitivity and specificity of the diagnostic tests

264 5.2.1 Evaluation of five diagnostic tests

265 Figure 2 presents the estimates of sensitivity and specificity for five diagnostic tests analyzed using working models 

266 I and II. The models produced asymptotically consistent estimates of the total population sensitivity and specificity 

267 with small systematic bias. The RMSE were good with acceptable coverages of the 95% credible intervals (95% 

268 CrI). Working model II, however, yielded estimates of sensitivity for CRP that were different from the true value 

269 with tendency towards the mean of prior distribution.
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270
271 Figure 2: Median (95% reference intervals (RI)) and mean (95% confidence intervals (CI)) estimates of total 
272 population sensitivity (left) and specificity (right) with corresponding root mean squared error (RMSE) and 
273 coverages of 95% credible intervals (CrI) for true total population sensitivity and specificity for five diagnostic tests 
274 evaluated using working model I (top panel) and working model II (lower panel) – Working model I restricts the 
275 diagnostic test accuracy and disease prevalence to remain constant across the HIV subpopulations, Working model 
276 II restricts the diagnostic test accuracy to remain constant but allows the disease prevalence to vary across the HIV 
277 subpopulations

278

279 Figure 3 presents the estimates of sensitivity and specificity by HIV status for five diagnostic tests evaluated using 

280 working model IV (true model). The model yielded estimates of sensitivity that matched the true values. The 
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281 estimates of sensitivity among the HIV- were skewed in the direction of the prior. There was no evidence of serious 

282 systematic bias in the estimates of specificity. Similar findings were obtained using working model III (Figure B.1 in 

283 Appendix B).

284

285 Figure 3: Median (95% reference intervals (RI)) and mean (95% confidence intervals (CI)) estimates of sensitivity 
286 (left) and specificity (right) for HIV+ (top panel) and HIV- (lower panel) with corresponding root mean squared 
287 error (RMSE) and coverages of 95% credible intervals (CrI) for true sensitivity and specificity for five diagnostic 
288 tests evaluated using the model allowing the diagnostic test accuracy and disease prevalence to vary across the HIV 
289 subpopulations (working model IV)
290
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291 5.2.2 Evaluation of three diagnostic tests

292 Figure 4 shows the estimates of sensitivity and specificity by HIV status for three diagnostic tests evaluated using 

293 working model IV (true model). 

294
295 Figure 4: Median (95% reference intervals (RI)) and mean (95% confidence intervals (CI)) estimates of sensitivity 
296 (left) and specificity (right) for HIV+ (top panel) and HIV- (lower panel) with corresponding root mean squared 
297 error (RMSE) and coverages of 95% credible intervals (CrI) for true sensitivity and specificity for three diagnostic 
298 tests evaluated using the model allowing the diagnostic test accuracy and disease prevalence to vary across the HIV 
299 subpopulations (working model IV)

300
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301 The estimates of sensitivity and specificity indicate some systematic bias. Similar findings were obtained using 

302 working model III (Figure B.3 in Appendix B). Figure B.2 in Appendix B shows the estimates of sensitivity and 

303 specificity for three diagnostic tests analyzed using working models I & II.

304 6. Discussion

305 Our aim was to investigate implications of violation of model assumptions induced by an observed external 

306 covariate that is associated with diagnostic test accuracy and risk of the targeted disease. We assessed some likely 

307 model violations on estimation of total population prevalence of the disease, sensitivity and specificity. We 

308 supported our results with finite sample simulations mimicking a setting of passive case-finding among presumptive 

309 pulmonary tuberculosis (PTB) patients with or without HIV. Based on realistic sensitivities and specificities of five 

310 diagnostic tests used for PTB, we simulated independent test results in samples of various sizes with different PTB 

311 prevalence within the HIV subpopulations. Due to instability of the estimates with small sample size, we endeavored 

312 to be as realistic as possible by choosing different sample sizes (1000, 2000, 5000) to help us evaluate the 

313 performance of LCA when the number of true PTB cases is as low as 60 (20 in the HIV+ and 40 in the HIV- 

314 subpopulations) when N=1000 and when it is as high as 300 (100 in the HIV+ and 200 in the HIV- subpopulations) 

315 when N=5000 with 6% overall TB prevalence (5% in HIV- and 10% HIV+). For five and three diagnostic tests, we 

316 performed Bayesian LCA using four working models assuming constant (or varying) PTB prevalence and diagnostic 

317 test accuracy across the HIV subpopulations. We have shown that in the analysis of five and three diagnostic tests 

318 the model ignoring heterogeneity in diagnostic test accuracy but allowing the prevalence of PTB to vary across the 

319 subpopulations (working model II) produced systematically biased estimates of total population PTB prevalence and 

320 diagnostic test accuracy. However, the models accounting for heterogeneity in diagnostic test accuracy across the 

321 subpopulations (working models III and IV) yielded consistent estimates with modest systematic bias. 

322 Working models I and II violated the assumption of conditional independence when the diagnostic test accuracy was 

323 restricted to remain constant. When used to evaluate five diagnostic tests, working model I appeared robust to 

324 violation of the assumption of conditional independence. Working model II yielded systematically biased but 

325 consistent estimates. Working models III and IV produced consistent estimates of total population PTB prevalence 

326 and modestly biased estimates of sensitivity with greater uncertainty. The specificity estimates matched the true 

327 values while the sensitivity estimates were skewed in the direction of the prior in the HIV- subpopulation. With 



17

328 small sample size (few cases with PTB) Bayesian estimation is driven more by the prior rather than the likelihood. 

329 This finding emphasizes the need to carefully choose the prior distribution as alluded to by others.[33–35] An 

330 additional analysis evaluating three diagnostic tests using the same working models but different priors revealed the 

331 unavoidable dependency of the results on the (informative) prior (Table B.1 and Figures B.4 – B.6 in Appendix B). 

332 In our analyses we chose prior distributions that reflected the degree of confidence in the performance of the 

333 diagnostic tests and the general understanding about the prevalence of the disease rather than knowledge of the 

334 actual estimate. This was intentional to avoid presuming knowledge of the performance of the diagnostic tests given 

335 the lack of a gold standard.

336 In the analysis of three diagnostic tests, working models I and II yielded systematically biased estimates of total 

337 population PTB prevalence. The models also produced systematically biased and highly unstable estimates of total 

338 population sensitivity. Thus, Bayesian LCA with fewer diagnostic tests that violate the assumption of constant 

339 diagnostic test accuracy across the underlying subpopulations may suffer from limited information that contribute to 

340 bias as established by others.[20,33,34,36] Using working models III and IV demonstrated modest bias in the 

341 sensitivity but reliable estimates of specificity. Failure to account for varying disease prevalence in working model 

342 III did not noticeably impact the estimates of diagnostic test accuracy. 

343 Residual dependence induced by a measured covariate remains even after conditioning analysis on the latent disease 

344 status. This leads to incorrect inferences. Potential remedies to such problems in real studies was evaluated through 

345 simulations. Though not applied to real dataset, this may not be viewed as a weakness of the study but should serve 

346 as a guide to experts intending to apply LCA to carefully consider plausibility of the model, especially in TB where 

347 severe comorbidities are known to affect diagnostic test performance. LCA uses all the available imperfect 

348 diagnostic tests, including symptoms, to determine the likelihood of the presence of PTB for an individual. 

349 Therefore, incorrectly specified model not only yields biased inferences for diagnostic test accuracy and disease 

350 prevalence but also contributes to incorrect diagnosis and treatment of cases. This has serious implications in terms 

351 of allocation of resources, unnecessary harm to individuals without the disease, and onward transmission of 

352 infectious disease by those missed due to incorrect diagnosis. Our approach reveals the need for a rigorous process 

353 that involves experts in the field of study. Besides their knowledge on the diagnostic tests known to be dependent 

354 conditional on the (unknown) disease status, their input regarding potential covariates that affect the disease 
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355 prevalence as well as the diagnostic test accuracy can be harnessed and incorporated into the model. In addition, 

356 correct statistical methods can be used to evaluate the importance of the proposed covariates in influencing disease 

357 prevalence and the diagnostic test accuracy. All these ideas put together should yield a plausible model that best 

358 explains the diagnostic accuracy of the tests and the prevalence of the disease.

359

360 7. Conclusion

361  In the presence of measured covariates known to affect the diagnostic accuracy and disease prevalence, experts 

362 should avoid the model that allows the disease prevalence to vary but restricts the diagnostic test sensitivity and 

363 specificity to remain constant across the different subpopulations. This model yield severely biased estimates of 

364 PTB prevalence and diagnostic test accuracy. The model that allows the disease prevalence to remain constant but 

365 allows the diagnostic test sensitivity and specificity to vary across the different subpopulations yields correct 

366 estimates of overall disease prevalence (averaged across the different subpopulations) and the subpopulation specific 

367 estimates of sensitivity and specificity. The model that allows disease prevalence and diagnostic test sensitivity and 

368 specificity to vary across the different subpopulations defined by the covariates known to induce test dependence 

369 should be applied. When the interest is also to understand the drivers of disease prevalence then this model should 

370 be applied. In the absence of measured covariates or when the conditions do not allow adjusting for covariates due 

371 to small sample size (or few PTB cases), the model that allows the disease prevalence and the diagnostic test 

372 sensitivity and specificity to remain constant across the different subpopulations can be applied since it would yield 

373 less biased estimates. 

374 In light of these findings, we recommend diagnostic studies to be as inclusive as possible in collecting important 

375 covariates known to influence diagnostic test performance e.g HIV status, history of TB treatment, miners etc. 

376 Because of the obvious concerns regarding imperfect reference standard, correctly specified latent class model 

377 should be used to evaluate new diagnostic tests as well as determine disease prevalence. Interpretation of results 

378 based on small sample sizes should be done carefully since they may lack precision. We saw a potential influence of 

379 the prior distribution on the posterior estimates of sensitivity attributed to small sample size. Therefore, correct 

380 choice of the prior for modelling uncertainty in diagnostic test sensitivity and prevalence is imperative, particularly 

381 for few diagnostic tests or small sample sizes. Different experts have applied different latent class models, some 
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382 adjusting for measured covariates and others failing to do so. Therefore, following robust model evaluation, our 

383 work provides an invaluable guidance on the correct approach for analysis of imperfect diagnostic tests in the 

384 presence of a measured covariate that affects the prevalence of the disease and/or diagnostic accuracy of the tests. 

385 Thus our findings complement the findings of the already published work. [37]  Future research should look into 

386 predictive models that can promptly give correct diagnosis for an individual based on clinical history, diagnostic test 

387 results and measured covariates. 
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505 Highlights

506  Residual dependence induced by a measured covariate remains even after conditioning analysis on the latent 
507 disease status. This violates the key assumptions of latent class analysis (LCA) hence incorrect inferences.
508  Models accounting for heterogeneity in diagnostic test accuracy induced by the covariate yield realistic 
509 estimates
510  Experts intending to apply LCA should carefully consider plausibility of the model, especially in TB where 
511 severe comorbidities are known to affect diagnostic test performance
512  Covariate-adjusted LCA alleviate bias implied by heterogeneity in diagnostic test accuracy. Therefore, we 
513 recommended it.
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