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A B S T R A C T

In many practical data applications, there are often a large number of pre-processed heteroscedastic features.
Discriminant analysis is a standard statistical learning method that is useful for classifying such multivariate
features. It is well known in literature that the Linear Discriminant Analysis (LDA) is quite sub-optimal for
the analysis of high-dimensional heteroscedastic data because of the inherent singularity and instability of the
within-class variance. However, shrinkage discriminant analysis (SDA) and its variants often perform better
due to its robustness against inherent multicollinearity and heteroscedasticity. In this article, we propose
some newly modified discriminant classification algorithms based on the SDA and compare their sensitivities
with those of other competing algorithms. The empirical application show that the proposed algorithms
perform moderately well for datasets with high dimensions and unequal co-variance structures when applied
to simulated and nutrition data with inherent heteroscedasticity and outliers. The sensitivity and precision
of the algorithms for the target classes ranges from 70%–100%. The balanced accuracy of all the algorithms
ranges from 50 to 75% for the three-class problem considered. Heteroscedastic discriminant algorithm performs
moderately well with high sensitivity for classifying health data with high and low dimensions.
. Introduction

Recent technologies have led to the prevalence of datasets with
igh dimensions and intricate multi-class structures (Zhou, Gao, Ding,
Liu, 2022). High-dimensional data have become more common in
any scientific fields because new automated data collection tech-
iques have been developed in recent times and they have elicited new
tatistical challenges because many datasets have a large number of
eatures. Some data have as many features (𝑝) as there are observations
𝑛), (𝑛 = 𝑝), while some have even more features than observations
𝑝 > 𝑛). Such datasets pose a challenge in data analysis because
lassical statistical methods of analysis, such as linear regression, lo-
istic regression and Linear discriminant analysis (LDA), cannot be
ppropriate for them (Thomaz, Kitani, & Gillies, 2006; Zhao, Wang, &
ie, 2018). While the penalized logistic regression and its variants can
e extrapolated and used in multi-class linear classification problems,
hey are rarely used in practice because of the difficulty in interpre-
ation (Gyamfi, Brusey, Hunt, & Gaura, 2017). Discriminant analysis
s a popular statistical learning method used in data science to find a
inear combination of features that characterizes or separates two or
ore classes of objects/groups (Dhamnetiya, Goel, Jha, Shalini, & Bhat-

acharyya, 2022). The LDA focuses on finding a feature subspace that
aximizes the separability between the target groups (classes). When
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(𝑛 < 𝑝), LDA and the quadratic discriminant analysis may be seriously
biased because of data heteroscedasticity in a multi-class problem. Dis-
criminant analysis aims to find the low-dimensional representation of
data such that data points within the same class will be pulled together
while those between different classes are separated as far as possi-
ble (Nie, Wang, Wang, Wang, & Li, 2019; Qin, 2018). As an attractive
approach to building models with more predictive power than multi-
ple logistic regressions, supervised shrinkage discriminant approach is
proposed in this study for classifying high-dimensional, multi-class het-
eroscedastic data. Machine learning techniques are ideal modeling tools
due to their ability to model non-linear and high-dimensional data,
with complex multi-domain variables (Hastie, Tibshirani, Friedman, &
Friedman, 2009).

Supervised shrinkage discriminant models have the capacity to uti-
lize high-dimensional data such that they can be used to model smaller
datasets that have a great number of predictor variables with decreased
overfitting. This buttresses the argument for choosing machine learning
over traditional statistical methods due to the ease of application and
high predictive capacity of machine learning models (Colmenarejo,
2020). Several supervised machine learning tasks in real life can be per-
formed as multi-class classification problems. However, discriminant
analysis approaches are well known to learn discriminative features
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in the statistical pattern recognition literature and can be easily ex-
tended to multi-class cases (Li, Zhu, & Ogihara, 2006; Nie, Wang,
Wang, & Li, 2019). The use of discriminant analysis has not been fully
experimented in the data mining literature, especially for multi-class
high-dimensional cases (Zhao et al., 2018). In classification problems,
the investigators often try to find the decision boundary, which can
divide the dataset into different classes. The classification problems
can also be divided on the basis of whether to use binary classifier or
multi-class classifier. One of the most renowned algorithms for handling
multi-class problems is the logistic regression. In logistic regression,
there is no requirement about the within-group covariance matrices of
the predictors, and most importantly the method is not so sensitive to
outliers that arise due to either changes in system behavior, human or
instrument error, or through natural deviations.

However, LDA suffers from several drawbacks, wherein, the first
drawback is that conventional LDA is incompetent to deal with multi-
modal data whose distribution is more complex than the Gaussian
distribution. To overcome this issue, Nie, Wang, Wang, Wang, and Li
(2019) presented a pairwise formulation of LDA, namely Neighborhood
MinMax Projections (NMMP), which attempts to pull the considered
pairwise points within the same class as close as possible and push those
between different classes separate. Furthermore, LDA also requires
sufficient train data to avoid the small sample Size problem (Nie, Wang,
Wang, & Li, 2019). Recent literature reveals that several machine
learning methods, including discriminant analysis, have been used to
analyze obesity prevalence (Adhikary & Ghosh, 2022; Alkhalaf, Yu,
Shen, & Deng, 2022; Cheng, Steinhardt, & Ben Miled, 2022; Hammond
et al., 2019; Liu, Fang, Zhou, Dou, & Dou, 2022). Other statistical ma-
chine learning methods apart from discriminant algorithms have been
used to predict obesity in literature (see for instance, Chatterjee, Jha,
Kumari, & Chatterjee, 2021; Li, Hong, Hao, Chen, & Huang, 2020; Pang,
Forrest, Lê-Scherban, & Masino, 2021; Ramya & Rohini, 2021; Safaei,
Sundararajan, Driss, Boulila, & Shapi’i, 2021). However, literature on
shrinkage-based discriminant analysis with application to obesity data
is scanty in literature, hence the essence of this present study. Due
to obesity complexity in adolescence, with major multi-domain factors
that influences growth interactions, traditional statistical methods such
as linear models display limitations and focus largely on analyses with
decreased predictive power. Such models do not possess the ability to
deal with high-dimensional data (Liu et al., 2022).

In this work, we explore the use of discriminant analysis for multi-
class and binary classification problems. We evaluate the performance
of discriminant analysis on a collection of population-based body mass
index (BMI) survey dataset and investigate its usage in BMI categoriza-
tion. Several studies have been conducted to explain the factors causing
obesity, citing a range of factors including socioeconomic factors; food
prices; the prevalence of restaurants; cigarettes and alcohol intake.
Prior research only took into consideration limited factors in their
models, using simple statistical analysis or simple classification and
association methods (Steyn, Nel, Nantel, Kennedy, & Labadarios, 2006).
More so, there is a paucity of adolescent overweight and obesity pre-
diction using machine learning techniques, especially in Africa (Dugan,
Mukhopadhyay, Carroll, & Downs, 2015; Hammond et al., 2019; Lin-
gren et al., 2016). Results from this present study will help to identify
relevant supervised discriminant machine learning algorithms that are
useful for accurately classifying or predicting obesity status for policy
implementation.

Hence, the overaching aim of this present work is to propose some
modified shrinkage-based algorithms for characterizing multi-class het-
eroscedastic data with application to a national health survey data and
compare their performances with the baseline mixture discriminant
algorithm (MDA) and the generalized linear model (GLM) which is
a supervised machine learning classification model used in predicting
the probability of a target variable. It is the gold baseline standard for
comparisons with other machine learning models in literature (Zhang
et al., 2009). The logistic regression and multinomial regression used
2

in this study belongs to the family of generalized linear models. Af-
ter this non-exhaustive introductory section, the rest of this paper is
organized as follows. In Section 2, we review the methodology of
LDA and some proposed modified shrinkage-based discriminant algo-
rithms for high-dimensional, multi-class data classification. Section 3
briefly describes some proposed algorithms. Section 4 contains some
experimental results and discussion, while we conclude the study in
Section 5.

2. Methodological framework

Modern multivariable data are often corrupted by heteroscedastic
noise because of the heterogeneous nature of data with multivariate
features (Li et al., 2020). Heteroscedastic Discriminant Analysis (HDA)
is a generalized method for feature space transformation that does
not impose the equal within-class covariance assumptions required by
the standard LDA. HDA is considered to be the constrained maximum
likelihood projection where the loglikelihood of the samples in the
projected space is maximized. Heteroscedasticity (non-constant error
variances) is assumed to be present in high-dimensional datasets. A
modified Fisher-based method is proposed based on the maximum
entropy covariance selection that overcomes both the singularity and
instability of the within-class scatter matrix of the LDA, especially
when the classes are more than two (Gyamfi et al., 2017). To create
a discriminant, we model a multivariate Gaussian distribution over a
p-dimensional input vector 𝑥 for each class 𝑐𝑖 with unequal variance as

𝑁𝑝(𝑥|𝜇,𝛴) = 1

(2𝜋)
𝑝
2

1
|𝛴|

0.5
exp(−1

2
(𝑥 − 𝜇)′𝛴−1(𝑥 − 𝜇)).

The main methodology and purpose of discriminant analysis is to assign
an unknown subject to one of 𝑘 classes on the basis of a multivariate ob-
servation 𝑥 = (𝑥1,… , 𝑥𝑝)𝑇 where 𝑝 is the number of features present in
the study. Suppose the class labels 𝑦𝑖 are defined to be integers ranging
from 1,… , 𝑘, assuming that there are 𝑛𝑘 observations in class 𝑘, where
𝑘 and 𝛴𝑘 are the corresponding mean vector and covariance matrix
f the p-dimensional heteroscedastic multivariate normal distribution
𝑁𝑝(𝜇𝑘, 𝛴𝑘).

Consider a linear feature space transformation

= 𝑉 ′𝑥 (1)

here 𝑥 is a p-dimensional sample predictor vector belonging to one
f the 𝑐𝑖, classes of response 𝑦, and 𝑉 is a projection matrix. The goal
f LDA is to find a projection matrix 𝑉 resulting in the best possible
eparation of the classes in the projected space by defining two scatter
atrices as follows:

The within-class scatter matrix 𝑆𝑖 is the measure of variability of
he class samples defined as

𝑖 =
∑

𝑥∈𝑐𝑖

(𝑥 − �̄�𝑖)(𝑥 − �̄�𝑖)′ (2)

here �̄�𝑖 is the mean of the class 𝑐𝑖.
The sum of the within-class sample variance defines the total within-

lass variance 𝑆𝑤 given by

𝑤 =
𝑐
∑

𝑖=1
𝑆𝑖 (3)

f 𝑛 denotes the total number of samples and 𝑛𝑖 is the number of samples
elonging to each class 𝑐𝑖, then the grand mean is

̄ = 1
𝑛
∑

𝑥
𝑥 (4)

The average of individual classes is given as

̄ 𝑖 =
1
𝑛

∑

𝑥 (5)

𝑖 𝑥∈𝑐𝑖
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The between-class sample variance 𝑆𝑏 is given by

𝑆𝑏 =
𝑐
∑

𝑖=1
𝑛𝑖(�̄�𝑖 − �̄�)(�̄�𝑖 − �̄�)′ (6)

sing the scatter matrices above, Fisher’s criterion is defined as

(𝑉 ) = argmax
𝑉

|𝑉 ′𝑆𝑏𝑉 |

|𝑉 ′𝑆𝑤𝑉 |

(7)

hich is maximized to get a projection vector that provides maximum
iscrimination of samples in the projection space 𝑉 = [𝑣1, 𝑣2, 𝑣3,… ,

𝑣𝑐−1]. Where 𝑐 is the class number. Taking the derivatives of the
generalized Fisher’s Index G(V) with respect to 𝑉 in (7) and setting
it equal to 0, we obtain:
𝑑
𝑑𝑉 𝐺(𝑉 ) = 𝑑

𝑑𝑉 (𝑉 ′𝑆𝑏𝑉 )𝑉 ′𝑆𝑤𝑉 − 𝑑
𝑑𝑉 (𝑉 ′𝑆𝑤𝑉 )𝑉 ′𝑆𝑏𝑉

(𝑉 ′𝑆𝑤𝑉 )2
= 0

=
(2𝑆𝑏𝑉 )𝑉 ′𝑆𝑤𝑉 − (2𝑆𝑤𝑉 )𝑉 ′𝑆𝑏𝑉

(𝑉 ′𝑆𝑤𝑉 )2
= 0

⟹ 𝑉 ′𝑆𝑤𝑉 (𝑆𝑏𝑉 ) − 𝑉 ′𝑆𝑏𝑉 (𝑆𝑤𝑉 ) = 0

⟹
(𝑉 ′𝑆𝑤𝑉 )(𝑆𝑏𝑉 )

𝑉 ′𝑆𝑤𝑉
−

(𝑉 ′𝑆𝑏𝑉 )(𝑆𝑤𝑉 )
𝑉 ′𝑆𝑤𝑉

= 0

⟹ 𝑆𝑏𝑉 −
(𝑉 ′𝑆𝑏𝑉 )(𝑆𝑤𝑉 )

(𝑉 ′𝑆𝑤𝑉 )
= 0

hich when simplified, becomes

𝑏𝑉 = 𝜆𝑆𝑤𝑉 (8)

here 𝑉 is the matrix of eigenvectors and 𝜆 is the eigenvalues of 𝑆−1
𝑤 𝑆𝑏

espectively.

. Modified shrinkage-based discriminant algorithms

Shrinkage-based LDA is a form of regularized supervised machine
earning method used to improve the estimation of co-variance matrices
n situations where the number of training samples (n) is smaller than
he number of features (p). In situations where the sample size of each
roup is less than the number of variables, it is clear that regularization
nd shrinkage discriminant techniques will enhance and improve pa-
ameter estimation and group classification (Thomaz et al., 2006). The
eason is that the commonly used estimators for the class-specific vari-
nces or the pooled variance in LDA can become unstable and therefore
educe the classification accuracy of the discriminant classifier. This
s the major motivation behind these algorithms. The shrinkage-based
iscriminant algorithms considered are based on modifications of (8).

Suppose we multiply both sides of Eq. (8) by 𝑆−1
𝑤 to give

−1
𝑤 𝑆𝑏𝑉 − 𝑆−1

𝑤 𝑆𝑤𝑉 𝜆 = 0

⟹ 𝑆−1
𝑤 𝑆𝑏𝑉 − 𝐼𝑉 𝜆 = 0

hich implies

𝑆−1
𝑤 𝑆𝑏)𝑉 = 𝑉 𝜆 (9)

here 𝑟𝑎𝑛𝑘(𝑆𝑏) ≤ (𝑐 − 1).
Note that the eigenvectors of (𝑆𝑤 + 𝑆𝑏)−1𝑆𝑏 are the same as that of

−1
𝑤 𝑆𝑏 (Thomaz et al., 2006). The performance of the standard LDA
an be seriously sub-optimal if there are only a limited number of
otal training samples (𝑛) compared to the dimension of the feature
pace 𝑝. We consider shrinkage-based algorithms proposed for targeting
imited sample high-dimensional data by adjusting regularized discrim-
nant rules to improve the within-variance estimation of the classes.
he major motivation behind these proposed algorithms is to use the
iscriminating information of the null space of the within-class scatter
atrix (𝑆𝑤) to maximize the between class scatter matrix (𝑆𝑏) when
𝑤 is singular. The main intuition behind the proposed algorithms is to
elect the most discriminant features in the original sample space when
𝑤 is non-singular (Jiang, Wang, & Leng, 2018). The general procedure
s as follows:

3

1. Calculate the rank (r) of the within-class scatter matrix 𝑆𝑤.
2. If 𝑆𝑤 is non-singular, (i.e 𝑟 = 𝑛), then the projection matrix

𝑉 is composed of the eigenvectors corresponding to the largest
eigenvalues of (𝑆𝑏 + 𝑆𝑤)−1𝑆𝑏.

3. Otherwise, calculate the eigenvector matrix of the singular
within-class scatter matrix 𝑆𝑤.

4. Suppose 𝑃 is the matrix that spans the 𝑆𝑤 null space sub-matrix
of 𝜆, then the projection matrix is composed of the eigenvectors
corresponding to the largest eigenvalues of 𝑃𝑃 ′𝑆𝑏(𝑃𝑃 ′).

5. Then the resulting eigenvectors obtained through the transfor-
mation 𝑃𝑃 ′ are the most discriminant vectors.

3.1. Shrinkage linear discriminant algorithm (SLDA*)

The main idea behind this algorithm is to discard the null space of
the between class scatter matrix (𝑆𝑏) by diagonalizing it first before di-
agonalizing the within-class scatter matrix (𝑆𝑤). This process avoids the
singularity problems related with the use of the LDA methods in high-
dimensional data. The key intuition behind this shrinkage discriminant
algorithm is to discard the null space of 𝑆𝑏 by diagonalizing it first
before 𝑆𝑤 as follows:

1. Diagonalize 𝑆𝑏 i.e calculate the eigenvector matrix 𝑃 ′𝑆𝑏𝑃 = 𝜆.
2. Let 𝑇 be the first 𝑞 columns of 𝑃 corresponding to the largest

eigenvalues of 𝑆𝑏, where 𝑞 ≤ 𝑟𝑎𝑛𝑘(𝑆𝑏)
3. Calculate 𝐷𝑏 = 𝑇 ′𝑆𝑏𝑇 , which is the diagonal of the 𝑞 ∗ 𝑞

sub-matrix of the eigenvalues matrix 𝜆.
4. Let 𝑍 = 𝑇𝐷−1∕2

𝑏 be a whitening transformation of 𝑆𝑏 that also
reduces its dimensionality. Diagonalize 𝑍′𝑆𝑤𝑍 by computing
𝑈 ′(𝑍′𝑆𝑤𝑍)𝑈 = 𝐷𝑤 and

5. Calculate the projection matrix 𝐷−1∕2
𝑤 𝑈 ′𝑍′.

We propose other versions of shrinkage algorithms as follows:

3.2. Shrinkage discriminant algorithm (SDA*)

This version of shrinkage discriminant analysis proceeds as follows:

1. Find the eigenvectors (𝜃), and the eigenvalues (𝜆) of 𝑆𝑝, where
𝑆𝑝 =

𝑆𝑤
𝑛−𝑘 . 𝑛 is the sample size and 𝑘 is the number of classes.

2. Obtain the average eigenvalue 𝜆 of 𝑆𝑝 using �̄� = 1
𝑛
∑𝑛

𝑗=1 𝜆𝑗 =
𝑡𝑟(𝑆𝑝)

𝑛 .
3. Form a new matrix of eigenvalues based on the following largest

dispersion values: 𝜆∗ = 𝑑𝑖𝑎𝑔[max(𝜆1, �̄�),… ,max(𝜆𝑛, �̄�)].
4. Form the modified within-class variance 𝑆∗

𝑤 = 𝑆∗
𝑝 (𝑛 − 𝑘) =

(𝜃𝜆∗𝜃′)(𝑛 − 𝑘).
5. The modified LDA is then constructed by replacing 𝑆𝑤 with 𝑆∗

𝑤
in the Fisher’s criterion (7).

A shrinkage regularization method is then performed as follows:

5a. Compute a pooled covariance matrix

𝑆𝑝(𝜔) = (1 − 𝜔)𝑆𝑝 + 𝜔�̄�𝐼

where

𝑆𝑝 =
𝑆𝑤
𝑛 − 𝑘

and

�̄� = 1
𝑛

𝑛
∑

𝑗=1
𝜆𝑗 =

𝑡𝑟(𝑆𝑝)
𝑛

.

5b. Take the shrinkage parameter 𝜔 from 0 ≤ 𝜔 ≤ 1 which
could be selected to maximize the leave-one-out classification
accuracy (Thomaz et al., 2006).

5c. Compute the identity matrix multiplier.

This regularization method has the effect of decreasing the larger
eigenvalues 𝜆 and increasing the smaller ones which counters the bias
inherent in sample-based estimation of eigenvalues.
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3.3. Heteroscedastic discriminant algorithm (HDA*)

We now proceed with the generalization to HDA. If 𝑛 denotes the
total number of samples and 𝑛𝑖 the number of samples belonging to
the class 𝑐𝑖, the HDA extension is generated by introducing a mod-
ified objective function into (7) which takes into account weighted
contributions of the individual classes as:
𝑐

∏

𝑖=1
(
|𝑉 ′𝑆𝑏𝑉 |

|𝑉 ′𝛴𝑖𝑉 |

)𝑛𝑖 =
(|𝑉 ′𝑆𝑏𝑉 |)𝑛

∏𝑐
𝑖=1(|𝑉 ′𝛴𝑖𝑉 |)𝑛𝑖

(10)

where 𝛴𝑖 is the covariance matrix of the class 𝑐𝑖 given by

𝑖 =
1
𝑛𝑖
𝑆𝑖. (11)

By taking the logarithm of (10), we obtain the following objective
function:

𝛾(𝑉 ) =
𝑐
∑

𝑖=1
−𝑛𝑖 log |𝑉 ′𝛴𝑖𝑉 | + 𝑛 log |𝑉 ′𝑆𝑏𝑉 | (12)

which is maximized by using the matrix differentiation,

𝑑
𝑑𝑣

𝛾(𝑉 ) =
𝑐
∑

𝑖=1
−2𝑛𝑖(𝑉 ′𝛴𝑖𝑉 )−1𝑉 ′𝛴𝑖 + 𝑛(𝑉 ′𝑆𝑏𝑉 )−1𝑉 𝑆𝑏.

However, this optimization procedure has no analytical solution. In
order to have an analytical solution, one attempt is to diagonalize
Eq. (12). For this, we have:

𝐺(𝑉 ) =
𝑐
∑

𝑖=1
−𝑛𝑖 log |𝑑𝑖𝑎𝑔(𝑉 ′𝛴𝑖𝑉 )| + 𝑛 log |(𝑉 ′𝑆𝑏𝑉 )| (13)

which in turn directly maximizes the between-class variance.

3.4. Mixture discriminant analysis (MDA)

The MDA is a popular supervised machine learning algorithm in the
DA family that can be viewed as a deeper look into the LDA classifier
because it assumes many of the assumptions of LDA such as the equality
of covariance matrix between groups, but it permits more variabilities
in its assumptions. While the LDA classifier assumes that each class has
a single Gaussian distribution, MDA assumes that each class is a mixture
of Gaussian subclasses, that is, each class is comprised of a mixture of
multivariate Gaussian subclasses. Because of this additional assumption
of MDA, it is capable of outperforming LDA and other discriminant
algorithms, especially when the distribution of the data points in the
classes is complex. Hence, we use it as a standard of comparison in
this work. The setup of the MDA is such that if we have 𝑛𝑗 training
data points from 𝑗 ∈ {1,… , 𝐽} population where each of the 𝑗 is
further divided into 𝑅𝑗 artificial subclasses 𝐶𝑗𝑟, 𝑟 = 1,… , 𝑅𝐽 so that
𝑅 =

∑

𝑗 𝑅𝑗 where 𝑛 =
∑

𝑗 𝑛𝑗 . Let a data point from an 𝑟th subclass
from 𝑗th population (having prior probability 𝜋𝑗) have a multivariate
Gaussian distribution with mean vector 𝜇𝑗𝑟, equal covariance matrix 𝛴
and unknown mixing probability 𝜋𝑗𝑟,

∑

𝑟 𝜋𝑗𝑟 = 1 estimable from the data
points, the mixture density for the population 𝑗 is given by

𝑚𝑗 (𝑥) = 𝑃 (𝑋 = 𝑥|𝐺 = 𝑗) = |2𝜋𝛴|

− 1
2

𝑅𝑗
∑

𝑟=1
𝜋𝑗𝑟 exp

−𝐷(𝑥, 𝜇𝑗𝑟)
2

(14)

here 𝐷(𝑥, 𝜇𝑗𝑟) is the Mahalanobis distance between 𝑥 and 𝜇𝑗𝑟 with re-
pect to 𝛴. The expectation maximization algorithm is used to estimate
𝑗𝑟, 𝜇𝑗𝑟 and 𝛴 (obtained by combining all the classes), and the posterior
robability that is used to classify a data point into the 𝑗th class when
t has the maximum probability given by

(𝐺 = 𝑗|𝑋 = 𝑥) ∼ 𝜋𝑗𝑃𝑟𝑜𝑏(𝑥|𝑗) ∼ 𝜋𝑗

𝑅𝑗
∑

𝑟=1
𝜋𝑗𝑟 exp

−𝐷(𝑥, 𝜇𝑗𝑟)
2

. (15)

More notes on the theoretical framework and applications of MDA are
contained in Friedman (1989) and Hastie and Tibshirani (1990).
 r
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3.5. Model evaluation metrics

There are several model evaluation metrics that are commonly used
in machine learning, such as accuracy, precision, sensitivity, specificity,
and F1-score. The performance evaluation metrics used in this study are
described as follows:

• Sensitivity: the ability of a test to correctly identify patients with
a disease. It is calculated as

Sensitivity = TP
TP + FN

(16)

where TP is true positive and FN is false negative.
• Specificity: the ability of a test to correctly identify people with-

out the disease. It is calculated as

Specif icity = TN
FP + TN

(17)

where TN is true negative, FP is false positive.
• Negative Predictive Value: It is the ratio of subjects truly di-

agnosed as negative to all those who had negative test results
(including patients who were incorrectly diagnosed as healthy).

• Prevalence is the number of cases in a defined population at a
single point in time.

• Accuracy measures how accurate the algorithm is. It is obtained
as

Accuracy = TP + TN
TP + TN + FN + FP

(18)

• Balanced Accuracy (BAC): It is calculated as:

BAC =
(Sensitivity + Specif icity)

2
= (19)

• F1-Score: This is the weighted average of precision and recall
(= sensitivity). It was adopted in this study because it is often
considered more useful than the accuracy because it combines
both precision and sensitivity. It can be obtained by the formula:

F1-Score = 2 ∗
Precision ∗ Sensitivity
Precision + Sensitivity

(20)

To minimize both false positive and false negative outcomes at
the same time, precision and sensitivity can be summarized by
using the F1-score, where precision is defined as:

Precision = TP
TP + FP

.

4. Experimental analyses

4.1. Simulation experiment

We perform a simulation experiment to determine the performance
of the proposed algorithms. The simulated data is composed of a
sample infected with outliers for a multi-class problem as inspired by
the works of Li, Jiang, Chen, Xu, and Yu (1999) and Stage, Carter,
and Nora (2004). The simulated dataset follows a multivariate normal
distribution with variables (𝑥1, 𝑥−2, 𝑥3, 𝑥4, 𝑥5) with both multi-level (a1)
and binary (b1) variables with different mean vectors 𝑚𝑢, correlation
matrix (𝑉 ) and variance–covariance matrix 𝛴 as follows:

= 𝐸(𝑥) = (0.75, 2.75, 50.55, 0.48, 40.12)′ (21)

𝛴 = 𝐸(𝑥 − 𝜇)(𝑥 − 𝜇)′ = 𝑑𝑖𝑎𝑔(0.44, 1.09, 8.51, 0.47, 6.12)′ (22)

𝑉 = (𝑐(1, .152, 12.096, .043, .109, .152, 1, .400,… , .382, 35.103, 1), 5, 5) (23)

A plot of the simulated data considered is shown in Fig. 1. We
mplement the algorithms for simulated data with both multi-class (k =
) and binary (k = 2) variables. We then report the sensitivities of the
lgorithms as shown in Fig. 3. The result shows that HDA outperforms
ll other algorithms in terms of sensitivity of the model with multi-class
esponse.
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Fig. 1. Simulated data.
Fig. 2. Outcome variable: BMI.
4.2. Application and insights from SANHANES data

In this section, we report experimental results based on insights
from a national health survey data in order to evaluate the performance
of shrinkage-based methods. In particular, we apply the algorithms
to a population-based nutrition data. The data was extracted from
the South African National Health and Nutrition Examination Survey
(SANHANES), a cross-sectional national household survey conducted
in 2011/12. The survey investigated the health and nutritional status
of South African adolescents. In many real life applications, there may
be a need to classify a given object under one of a number of distinct
classes based on a set of features or variables that describes them. A
typical problem is the task considered in this study of classifying body
mass index into one of a number of multi-class health states, namely
underweight, normal and overweight (see Fig. 2).

4.3. Covariates

In the SANHANES data considered, the primary outcome variable is
the body mass index (BMI) categorization of each respondent. Weights
and heights were measured using the method adopted by Nieman
and Lee (2019). The target variable assigns the patients into three
5

BMI classes namely Underweight, Normal and Overweight. BMI was
calculated for all participants as weight (in kg) divided by the square
of height (in m; kg/m2). The recommended Centers for Disease Control
(CDC) BMI-for-age (indicated as a percentile) cut-offs were used to
classify participants as underweight, normal and overweight. All the
covariates were categorized into the following domains: socioeconomic,
demographic, behavioral risk factors, dietary variables, and family his-
tory. The socioeconomic covariates comprised dwelling type, household
health insurance, household engagement in meat or poultry agriculture,
household food insecurity, household income, household wealth index
and having accessed healthcare from a healthcare provider in the past
two years. The demographic variables comprised age, province, race
group and household locality type. Locality type included urban in-
formal, urban formal, rural informal (typically traditional tribal areas)
and rural formal (typically farm areas). The behavioral risk factors
include physical activity, weight loss attempts, weight gain attempts,
current smoking, high alcohol consumption, and psychological distress.
Current smoking was based on self-report and high-risk alcohol use was
measured by the AUDIT-C, a 3-item alcohol screening tool.

The dietary variables include nutrition knowledge, dietary diver-
sity, consumption of fat, sugar and fruit and vegetables, red meat
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consumption, daily milk consumption, daily snack consumption, and
preference for fat spreads. The nutrition knowledge score was derived
from nine questions assessing knowledge on fiber, fat, sugar and fruit
and scores of 0–3 were considered low, 4–6 as medium and 7–9 as
high knowledge. A dietary diversity score was calculated using partic-
ipants recall of the foods and drinks they had the previous 24 hours
where a score below four is considered to be low (Steyn et al., 2006).
Sugar consumption was assessed by four items on weekly consumption
of sweetened beverages, confectionery and sweet snacks. Fruit and
vegetable consumption was assessed by four items on the weekly
consumption of fresh fruit and vegetables. Ten items assessed weekly
fat consumption. The sum scores for each of fat, sugar and fruit and
vegetables were categorized into low, moderate and high based on the
data distributions of their sum scores. Red meat consumption assessed
consumption of red meat with fat removed. Based on the number of
meals and snacks consumed per day, three or more meals with snacks
in-between were considered high snack frequency. Preference of fat
spreads referred to the amount of butter, fat or margarine usually
spread on bread or crackers. Blood pressure referred to systolic and
diastolic blood pressure, which were measured during the physical
examination processes of the survey.

4.4. Results

We utilize the confusion matrix to determine the performance of the
proposed discriminant algorithms for classifying incidence of obesity
in South Africa using the evaluation indices of balanced accuracy, F1-
Score, sensitivity and specificity. The balanced classification accuracy
measures the proportion of cases correctly classified by the algorithms,
while sensitivity measures the fraction of positive cases that are cor-
rectly classified as positive. Specificity, on the other hand, measures
the fraction of negative cases that are classified as negative. The algo-
rithm with the highest sensitivity and balanced accuracy or F1-Score
is usually considered as the best predictive model for classification.
Ten-fold cross-validation with five repeats were executed on the data,
using a 70–30 divide for the training and testing set. Each model is
automatically tuned and is evaluated using five repeats of 10-fold cross
validation. Once the models are trained and an optimal parameter
configuration found for each, the accuracy results from each of the best
models are collected. Each winning model has 50 results (i.e 5 repeats
of 10-fold cross validation). The objective of comparing results is to
compare the accuracy distributions between the models. All analyses
were done with the 𝑅 Software.

Each machine learning algorithm has several features that processes
data in different ways. However, a considerable amount of research
in literature have been devoted to modified versions of the shrinkage
discriminant algorithms which are capable of handling small samples
and high dimensional problems in the presence of heteroscedasticity.
Most often, the data that is fed into these algorithms are also different
depending on various scenarios and experiments. However, in many
practical situations, there is no one model that works best for every
data. The assumptions that a great model works well for all problems
may not be true because such model may not fit another data well.
It is therefore pertinent and peculiar in machine learning to attempt
various models or algorithms in order to discover the one that performs
best for a specific problem (Dukhi, Sewpaul, Sekgala, & Awe, 2021).
In this work, we consider two cases of experiments in order to assess
the performance of the proposed shrinkage algorithms. In the first
experiment (Case 1), we consider a high-dimensional data (HDD) multi-
class case where n = 50, p = 62 and k (number of classes) = 3. In the
second case (Case 2), we consider a low-dimensional data (LDD) binary
case where n = 671, p = 30 and k = 2.
6

Table 1
Results from Shrinkage Discriminant Algorithm (SDA*).

Metric Underweight Normal Overweight

Sensitivity (%) 0.00 0.89 0.14
Specificity (%) 1.00 0.22 0.82
Neg. Pred. Value 0.89 0.67 0.60
Prevalence 0.11 0.50 0.39
Detection Rate 0.00 0.44 0.06
BAC (%) 0.50 0.56 0.48

Table 2
Results from Heteroscedastic Discriminant Algorithm (HDA*).

Metric Underweight Normal Overweight

Sensitivity (%) 0.00 1.00 0.29
Specificity (%) 1.00 0.33 0.91
Neg. Pred. Value 0.89 1.00 0.67
Prevalence (%) 0.11 0.50 0.39
Detection Rate 0.00 0.50 0.11
Bal. Accuracy (%) 0.50 0.67 0.60

Table 3
Model comparisons: Sensitivity, Specificity and F1-Score for high-
dimensional case.

Model Sensitivity (%) Specificity (%) F1-Score (%)

SDA* 0.941 0.214 0.871
HDA* 1.000 0.000 0.878
GLM 0.927 0.238 0.867
SLDA* 0.967 0.024 0.864
MDA 0.861 0.214 0.828

4.4.1. Case 1: High-dimensional multi-class case
In this instance, we consider the number of respondents to be n = 50

patients with 62 features recorded for each respondent in the survey,
which are the explanatory variables (covariates). This makes the data a
high-dimensional data. First, we show the table of results of each of the
proposed shrinkage and heteroscedastic discriminant algorithms (SDA*
and HDA*) for classifying a multi-class high-dimensional problem in
Tables 1 and 2. Results in Table 1 shows that SDA* performs well for
the multi-class case with a sensitivity of 89% for the normal class with
56% balanced accuracy and a negative predictive value of 67%. Table 2
shows that the HDA* performs well the classification of the normal
weight with 100% sensitivity, 100% negative predictive value and 67%
balanced accuracy.

We then compare the performance metrics of these shrinkage al-
gorithms with the generalized linear model (GLM), which is often
considered as the gold standard approach for modeling public health
outcomes such as overweight and obesity (Zhang et al., 2009). Figs. 4–
6 shows that the high dimensional discriminant algorithm (HDA*)
and the shrinkage discriminant algorithm (SDA*) have the highest
accuracies. These models are closely followed by the GLM and SLDA
in terms of accuracy. Table 3 shows the results of the comparison of
the performance of the shrinkage algorithms with the GLM and MDA
for the high-dimensional data.

Fig. 2 shows that SDA* and HDA* have the highest accuracies
followed by the GLM and SLDA. In terms of sensitivity, HDA* depicts
the highest sensitivity followed by SLDA*, SDA* and GLM for the high-
dimensional case (Fig. 3). In Fig. 4, the HDA* also depicts the highest
performance in terms of F1-Score, followed by SDA*, GLM and SLDA*.
MDA performed lowest in terms of sensitivity and F1-Score.

4.4.2. Case 2: Low-dimensional binary case
In Case 2, which is the low-dimensional case, the HDA is also the

highest in terms of accuracy, followed by SLDA and the GLM (see
Fig. 7). In Fig. 8, the sensitivity of the HDA is also the highest, followed
by the SLDA. The GLM has the lowest sensitivity. In terms of the F1
Score (Fig. 9), the HDA is the best performing model, followed by

the SLDA, while the GLM has the lowest F1 Score. Also, the balanced
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Fig. 3. Comparison of model sensitivities for simulated multi-class outlier infested data.

Fig. 4. Case 1 (HDD): Model comparison of Accuracy.

Fig. 5. Case 1(HDD): Model comparison of Sensitivity.

Fig. 6. Case 1 (HDD): Model comparison of F1-Score.

7
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Fig. 7. Case 2 (LDD): Model comparison of Accuracy.
Fig. 8. Case 2 (LDD): Model comparison of Sensitivity.
Table 4
Model comparisons: Sensitivity, Specificity and F1-Score for low-
dimensional case.

Model Sensitivity (%) Specificity (%) F1-Score (%)

SDA 0.917 0.105 0.859
HDA 1.000 0.000 0.891
GLM 0.904 0.158 0.857
SLDA 0.942 0.053 0.867
MDA 0.923 0.079 0.859

accuracies of all the algorithms range mostly from 50 to 75% for all
classes.

It is evident that in all the model experiments, the HDA, SDA and
SLDA outperforms others, for both multi-class and binary cases. They
performed better that the GLM and MDA in all cases. The HDA has been
shown to be a model-based generalization of linear discriminant anal-
ysis (LDA) derived in the maximum-likelihood framework to handle
heteroscedastic-unequal variance-classifier models.

Table 4 shows the results of the comparison of the performance
of the shrinkage algorithms with the GLM and MDA for the low-
dimensional data. HDA has the highest sensitivity, while GLM has the
lowest sensitivity. Feature importance was performed with the best
performing model to discover the most significant features affecting
obesity among adolescents in South Africa. Fig. 10 shows that feature
importance using HDA depicts that Gender (Sex), location (geotype),
weight gain attempt and family history of diabetes are the most signif-
icant factors in predicting obesity status among adolescents in South
Africa. It has been reported that overweight and obesity in adults
are increasing in South Africa and it is contributing substantially to
deaths and disability from non-communicable diseases. In our study,
Sex (Gender) is the feature with the highest importance to obesity and
overweight as seen in Fig. 10. Compared to men, women suffer more
from obesity, which has had adverse affects on their health (Nglazi &
Ataguba, 2022).
8

4.5. Discussion

In literature, obesity is strongly associated with multiple risk factors.
It is significantly contributing to an increased risk of chronic diseases
globally (Alkhalaf et al., 2022). There are various challenges to better
understand the association between the risk factors of obesity and
the occurrence of obesity. The traditional regression approach limits
analysis to only a small number of predictors and imposes the pop-
ular assumptions of normality, independence and linearity. Machine
Learning (ML) methods have been used as an alternative approach that
provides useful information on data analysis on obesity in this study.
The novelty in this present work is that we have proposed modifications
to the original shrinkage-based algorithms for high-dimensional het-
eroscedastic data to further improve their discriminating performance.
This is done by adjusting some regularized discriminant rules to im-
prove the within-variance estimation of the classes. These algorithms
performs considerably well with the heteroscedastic discriminant algo-
rithm outperforming other algorithms for classifying obesity patients.
The heteroscedastic discriminant algorithm (HDA) outperforms other
models in terms of sensitivity, accuracy and precision for classifying
obesity status among adolescents in South Africa. Feature importance,
as shown in Fig. 10, using HDA depicts that Gender (Sex), location
(geotype), weight gain attempt and family history of diabetes are the
most significant factors for predicting obesity status among adolescents
in South Africa. Identifying these risk factors can better inform health
authorities in designing or adjusting existing policies for managing and
controlling chronic and non-communicable diseases in relation to risk
factors associated with obesity.

Moreover, applying ML methods on publicly available health data,
such as the SANHANES is a promising strategy to fill the gap for a
more robust understanding of the associations of multiple risk factors
for predicting public health outcomes. The result contained in this
research is a typical example of an intelligent systems application for
disease classification and prediction. The present empirical study in
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Fig. 9. Case 2 (LDD): Model comparison of F1-Score.
Fig. 10. Variable importance with HDA.
his article show that our proposed algorithms perform moderately
ell for nutritional datasets with moderate dimensions and unequal

o-variance structures. Our future work will focus further on some
igh-dimensional simulation studies and applications to classification
roblems involving spatially correlated data in several other fields.

. Conclusion

Discriminant analysis has been shown in this study to be a standard
tatistical learning tool for modern data analysis of high and low-
imensional data with multivariate heteroscedastic features. In this
ork, we have proposed some newly modified statistical learning clas-

ification algorithms based on the shrinkage discriminant analysis. We
ave shown an estimation consistency property of these supervised
ethods, and compared their performances with a few other com-
etitors like the mixture discriminant algorithm and the generalized
inear model for both multi-class and binary scenarios. Our empirical
tudy shows that the proposed machine learning algorithms perform
oderately well for datasets with moderate dimensions and unequal

o-variance structures when applied to a nutrition (BMI) data. The
eteroscedastic discriminant algorithm showed better results on the

ccuracy, specificity, precision, and F1-Score metrics. Our experiments

9

suggest that shrinkage heteroscedastic discriminant analysis provides
a fast, efficient and moderately accurate alternative for general multi-
class classification problems with high and low dimensions. Therefore,
it is vital that to address the prevention of adolescent obesity, modern
predictive models should be developed to identify individuals who are
likely at great risk. Such models focus on high-risk populations, while
taking on a personalized and cost-effective approach in weight reducing
policy interventions.

Applying supervised machine learning methods to public health
data can help to improve predictions and find a rich structure among
publicly available data in order to increase understanding of complex
problems in public health, including risk factors for obesity. The ML
methods and applications used in this study could inform the design of
more appropriate health policies and programs to address several non-
communicable diseases, notably in predicting obesity incidence and
prevalence as well as reducing severity and cost of treating overweight
and obesity-related conditions which eventually could improve the
health and well-being of the populace. Apart from that, the discrim-
inant methods shown in this study could be utilized to identify the
most significant risk factors for predicting obesity status. In particu-
lar, shrinkage heteroscedastic discriminant algorithms can be applied

to publicly available national datasets, such as the SANHANES data.
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Finally, machine learning models showed good performance for BMI
classification when survey data related to diet and eating habits were
used. The algorithms proposed demonstrated that machine learning is
a powerful tool that can be used in health research to make policy
decisions for timely treatment of people at risk of obesity.
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