TB and HIV epidemiology in South Africa: status and opportunities for collaborative and integrated care

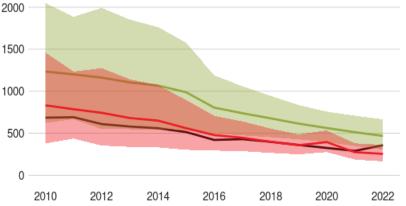
Sizulu Moyo Human Sciences Research Council TBAC Convening 25 October 2024

Introduction & presentation outline

- TB and HIV are major public health conditions in South Africa
 - commonly occur together
 - are driven by similar structural drivers
- This presents opportunities for collaborative and integrated care to maximise positive outcomes

Presentation outline

- Status of TB
 - TB profile
 - Strategies implemented and challenges
- Status of HIV- Findings from the 6th South African national HIV prevalence, incidence and behaviour survey, 2022
 - Key findings
 - What is working, and areas of challenges
- Addressing the challenges and areas of synergy to maximise positive outcomes



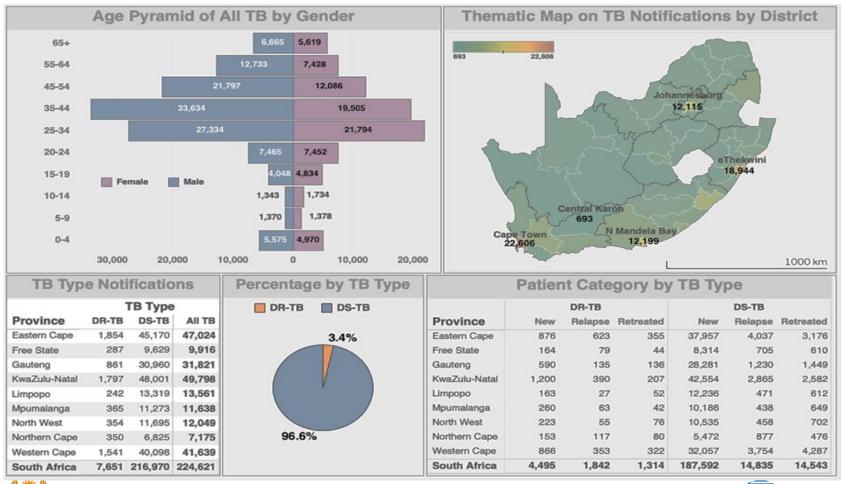
SATB profile – 2022

	Number	(Rate per 100 000 population)
Total TB incidence	280 000 (182 000-398 000)	468 (304-665)
HIV-positive TB incidence	152 000 (99 000-217 000)	255 (166-362)
MDR/RR-TB incidence**	11 000 (6 700-16 000)	19 (11-26)
HIV-negative TB mortality	23 000 (22 000-24 000)	39 (37-41)
HIV-positive TB mortality	31 000 (9 900-64 000)	52 (17-107)

Incidence, New and relapse TB cases notified, HIV-positive TB incidence (Rate per 100 000 population per year)

Total Notification: 224 621 New and Relapse: 214 295

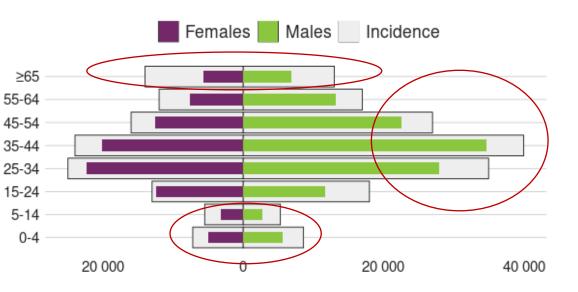
- HIV Status known: 88%
- HIV positive: 102 254 (54%)
- PLHIV on ART: 90 363 (88%)
- PLHIV newly enrolled on TPT: 62% MDR/RR-TB: 6 781 (3%)
 Pre-XDR-TB: 809 (0,4%)
 TB treatment coverage: 77%
 TB consectation integration in 20%


Department: Science and Innovation REPUBLIC OF SOUTH AFRICA

Treatment success rate

New and relapse cases registered in 2021	79%
Previously treated cases, excluding relapse, registered in 2021	60%
HIV-positive TB cases registered in 2021	79%
MDR/RR-TB cases started on second-line treatment in 2020	62%
Pre-XDR-TB/XDR-TB cases started on second-line treatment in 2020	53%

TB notifications by age, sex and province



science & innovation

Department: Science and Innovation REPUBLIC OF SOUTH AFRICA Source SA TB Annual Report 2023

TB incidence and notifications - 2022

Source: Global TB Report, WHO. 2023

Category	P:N ratio	
Total	1.75	
Male	1.89	
Female	1.70	
15-24 years	2.91	
25-34 years	1.61	
35-44 years	1.55	
45-54 years	1.66	
55-64 years	1.63	
≥65 years	2.88	

P:N ratios SA TB prevalence survey 2018

Evidence to understand guide interventions

Numerous trials & studies

- Systematic screening •
- **DR-TB** regimens •
- **Paediatrics regimens** •
- Adherence support •
- Preventive therapy •
- Patient pathways •
- Modeling work •
- Vaccine trials

PLOS MEDICINE

Evaluating systematic targeted universal testing for tuberculosis in primary care clinics of South Africa: A cluster-randomized trial (The TUTT Trial)

na Vreede¹⁷, Mohamed Said^{13,17} Itso Lebina^{13,17}, the TUTT Trial Is

cepted: April 21, 2023 helt. May 22, 202 er Review History PLCS

berculosis (TB). However, TB prevalence surveys suggest that this strategy does not entify millions of TB patients, globally. Undiagnosed or delayed diagnosis of TB contril o TB transmission and exacerbate morbidity and mortality. We conducted a cluster-rai domized trial of large urban and rural primary healthcare clinics in 3 provinces of South Africa to evaluate whether a novel intervention of targeted universal testing for TB (TUTT) is more patients with TB pe

Methods and findings

Abstract

Saty-two clinics were randomized: with initiation of the intervention clinics over 6 months om March 2019. The study was prematurely stopped in March 2020 due to clinics o s, and then a week later due to the Coron

04237 May 22, 202

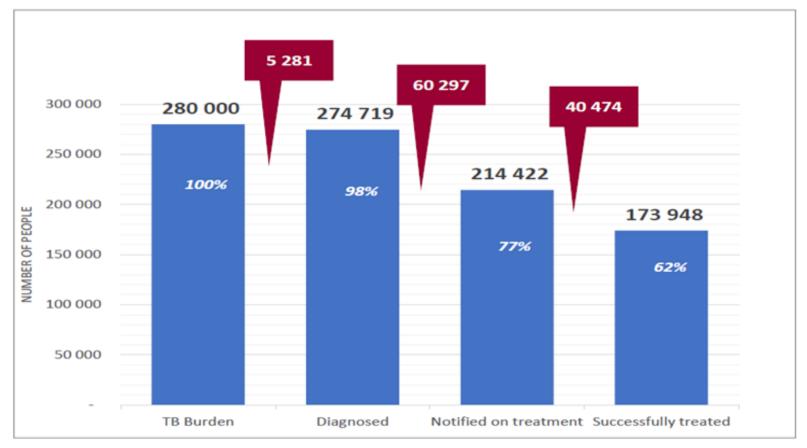
• PLHIV

TB

- · Children < 5-years old
- Health workers
 - People in prisons and other closed settings
- · People living in informal settlements · Mineworkers and peri-mining
- communities Sex workers
- · Migrants, mobile populations, and undocumented individuals

- Contacts of PWTB
- · People with prior TB
- Smokers
- · People with harmful alcoholuse
- The elderly
- · Adolescents and young people
- People with diabetes
- Pregnant women
- Men
- People with disabilities
- · People with mental health conditions

TB key and priority populations-NSP



REPUBLIC OF SOUTH AFRICA

science & innovation Department: Science and Innovation

TB care cascade - 2023

Source NDoH, NTP

TB detection

Detection strategies implemented

- Routine testing of at-risk groups irrespective of symptoms
 - People living with HIV
 - Household contacts of people diagnosed with DS-TB/DR-TB
 - People previously treated for TB in the past year
- TB symptom screening and testing of symptomatic people
- DCXR Screening and testing people with abnormal x-rays with or without symptoms
- Targeting high burden areas- hotspots
- Options for testing e.g.:- Urine LF-LAM assay for ٠ eligible symptomatic people living with HIV
- Increasing capacity to detect TB in children ence & innovation

epartment

cience and Innovation PUBLIC OF SOUTH AFRICA

Challenges/what is not working

- Eligibility unknown for TUTT
- Poor clinical skill/poor application- hx taking
- Limited resources human, equipment
- Poor tracing of contacts and community linkages
- Poor integrations of services even with HIV services (PLHIV newly enrolled on TPT: 62%)
- No dedicated staff to sort lab results
- Staff attitudes
- Poor recording/record keeping/record flow
- Lack of integration of services
- Poor health education to clients
- Limited knowledge about TB in communities

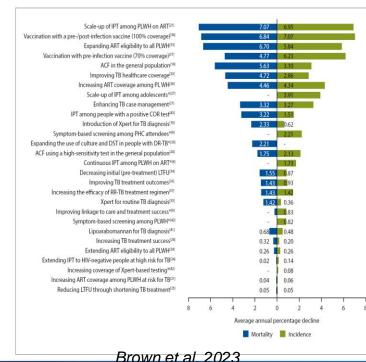
Treatment initiation & retention in care

Strategies implemented

- Integrated patient centered care
- Package of services for TB
 - Health education and counselling
 - Social and nutritional support
 - Mental health support
 - Treatment support
 - Contact Management
- Support for linkage to care- \downarrow ILTFU and \uparrow retention in care
- Decentralized, home/community-based models of TB care
- Introduction of shorter treatment regimens 9 and 6 month

Challenges/what is not working

- Package of care not implemented
- Staff attitude ? resistance to change
- Lack of integration of services
- Stigma
- Fear/ denial/ myths & misconceptions
- Alcohol and substance abuse
- Structural factors, competing demands
- Pill burden (with comorbidities)
- Treatment fatigue
- Poor recording/record keeping/record flow
- Long patient wait times



TB preventive treatment - TPT

Strategies implemented

- TPT guidelines for all eligible people
- 'family-centred'/'household-centred' approach to integrated TB treatment and TPT
- Social support

Challenges/what is not working

- Training not yet cascaded to all health facilities
- Poor implementation of contact management
- Poor integration of TB and HIV
- Package of services for TB services not fully implemented
- Stockouts
- Limited knowledge about TPT in communities
- Low demand

Closing gaps in the TB care cascade

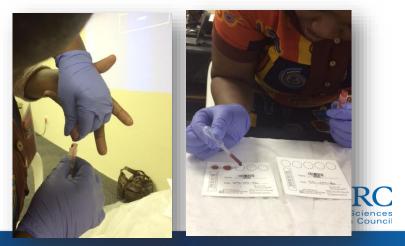
- Utilize our evidence better e.g. hotspot targeting, TUTT
- Allocate adequate resources/use resources more efficiently to address the basics
 - Contact management
 - Clinical skills- history taking
 - CE and training esp for adoption pf guidelines
 - Record keeping
 - Staff attitudes
- Integrate TB care and services with that of other conditions especially with HIV (54% co-infection)
- Promote correct knowledge about TB and what to do about it/what to do about TB symptoms- rapid roll out of the SBCC strategy & entrench screening and testing for TB in healthcare settings,
- Adopt and roll out innovations more rapidly e.g. improved diagnostics, new drugs
- Adopt a multisectoral approach for prevention, and treatment
 - Collaborate with other departments to address structural drivers,

Department: Science and Innovation REPUBLIC OF SOUTH AFRICA

science engoy for nutrition support, other social support

HIV IN SOUTH AFRICA: FINDINGS FROM THE SIXTH SOUTH AFRICAN NATIONAL HIV PREVALENCE, INCIDENCE, AND BEHAVIOUR SURVEY (SABSSM VI)

Survey aim and data collection


- **AIM:** To estimate at national and provincial level:
 - HIV prevalence (adults and children)
 - Exposure to ART
 - Viral load suppression
 - HIV incidence- national level
 - HIV drug resistance- national level
- To investigate behavioural drivers of HIV
 - Condom use
 - Sexual debut
 - Multiple sexual partners
 - Age disparate sexual relationships
 - Medical circumcision

Data collection

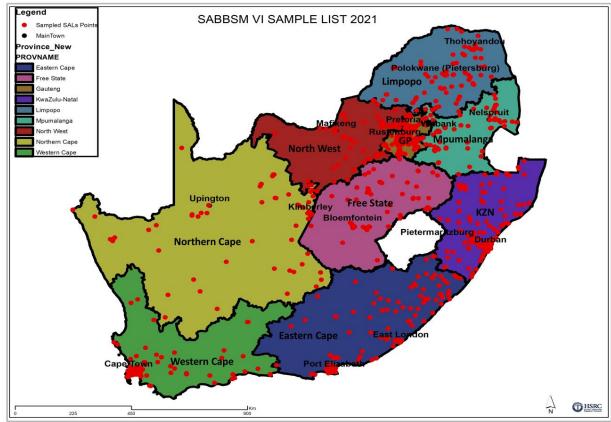
- Questionnaires
- Household level
- Individual level
- -Children 0-11 years parent/guardian
- -Adolescents 12 to 14 years
- –Persons aged 15 years and older
- -Offered HIV testing

Blood samples

Dried blood spot (DBS) specimens

Design and sampling

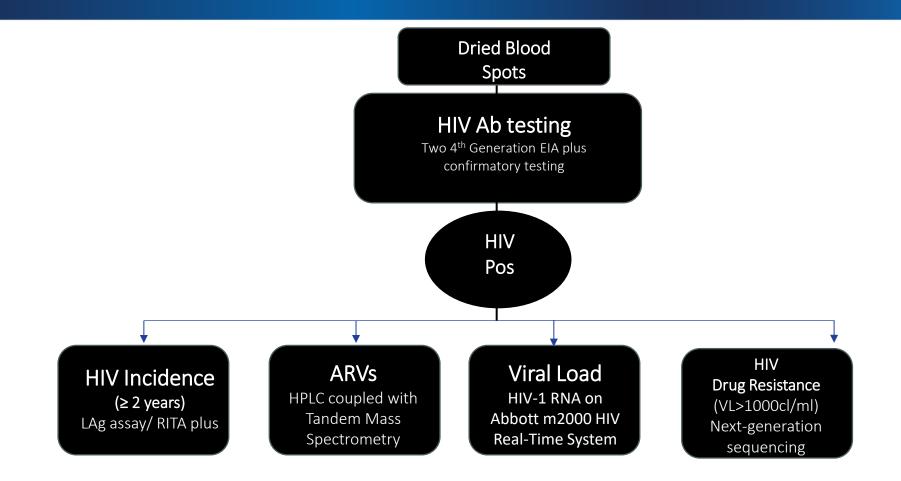
Design


- Cross-sectional, household
- Multi-stage stratified cluster random sampling

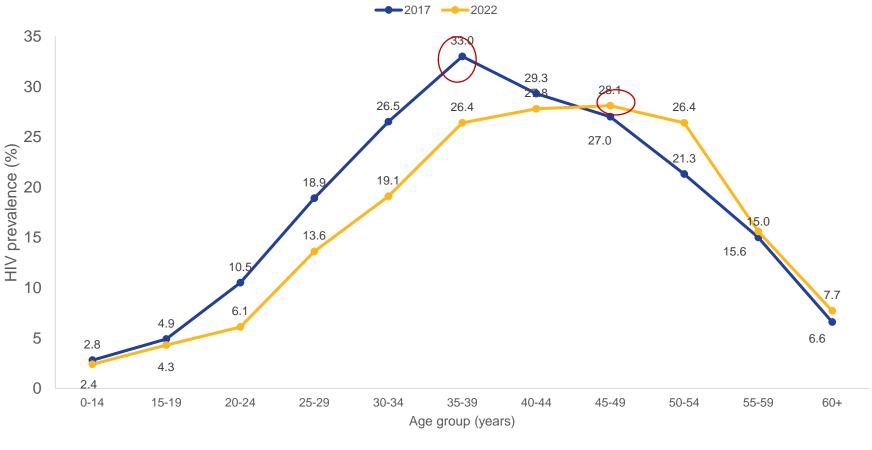
Geographic scope

- National level
- Additional sampling in 33 districts

Population

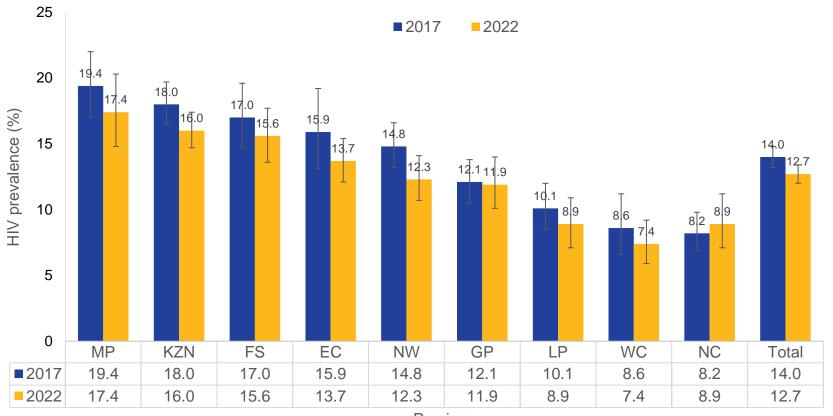

 Persons of all ages living in South Africa at the time of the survey

Specimen testing



Estimated HIV prevalence by age & sex 2017 & 2022

Age group (years)	2017		2022	
	HIV prevalence (%)	Number of PLHIV	HIV prevalence (%)	Number of PLHIV
Total	14.0 [13.2–14.8]	7 900 000	12.7 [12.0–13.4]	7 800 000
Male	10.8 [10.0–11.7]	3 000 000	8.8 [8.1–9.5]	2 600 000
Female	17.1 [16.0–18.3]	4 900 000	16.4 [15.2–17.5]	5 200 000
0–14	2.8 [2.4–3.4]	470 000	2.4 [1.9–3.2]	390 000
15–24	7.8 [6.9–8.8]	750 000	5.2 [4.5–6.0]	530 000
25–49	26.3 [24.8–27.9]	5 600 000	22.1 [20.8–23.5]	5 300 000
50+	12.4 [10.8–14.2]	1 100 000	14.0 [12.5–15.6]	1 600 000
15–49	20.6 [19.4–21.8]	6 300 000	17.0 [16.1–18.0]	5 800 000
Science & innovation Department Republic of Division Republic of Division 155+	18.7 [17.6–19.9]	7 400 000	16.3 [15.4–17.2]	7 400 000


Estimated HIV prevalence by age, 2017 & 2022

Estimated HIV prevalence by province 2017 & 2022

Province

Estimated HIV prevalence by *locality 2017 & 2022

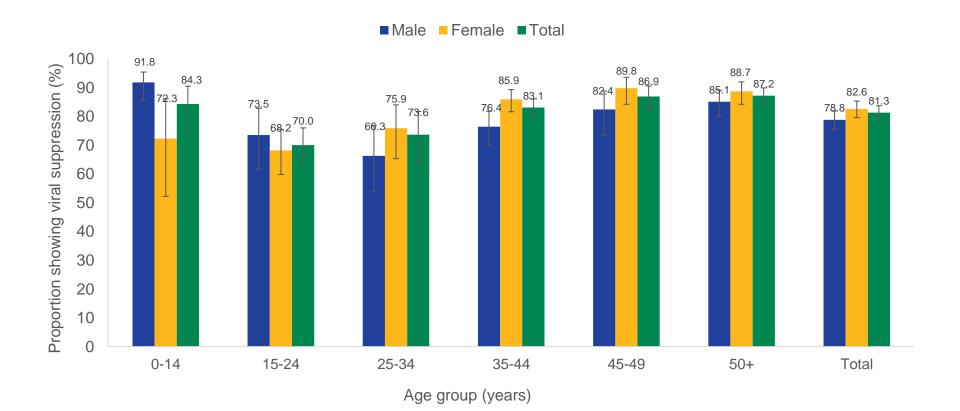
Variables	2017		2022	
	HIV-positive (%)	Number of PLHIV	HIV-positive (%)	Number of PLHIV
Locality type				
Urban	13.0 [12.0–14.1]	4 600 000	12.3 [11.4–13.2]	4 800 000
Rural informal/tribal areas	15.3 [14.0–16.7]	2 700 000	13.0 [11.8–14.3]	2 400 000
Rural formal/farm areas	17.8 [5.4–20.5]	580 000	14.8 [12.7–17.2]	600 000

<u>UDR</u>

SamRC

TICD

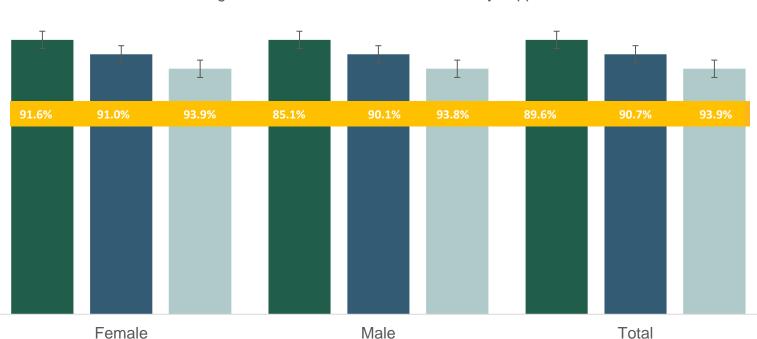
*as defined by STASSA



Antiretroviral treatment by sex and age, 2017 & 2022

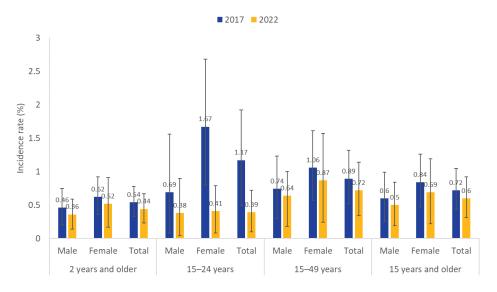
Age group (years)	2017		2022	
	PLHIV on ART % [95% CI]	Estimated number of PLHIV on ART	PLHIV on ART % [95% CI]	Estimated number of PLHIV on ART
Total	63.7 [61.3–66.0]	4 500 000	80.9 [78.1–83.5]	5 700 000
Male	58.6 [54.5–62.6]	1 500 00	76.2 [71.5–80.3]	1 800 000
Female	66.5 [64.0–68.9	3 000 000	83.2 [80.2–85.9]	4 000 000
0–14yrs	54.5 [43.2–65.3]	170 000	79.0 [66.8–87.5]	280 000
15–24yrs	41.4 [35.0–48.1]	280 000	63.2 [56.1–69.7]	270 000
25–49yrs	64.5 [61.5–67.5]	3 300 000	82.1 [78.0–85.6]	3 900 000
50+yrs	77.5 [73.4–81.2]	770 000	82.8 [77.0–87.4]	1 200 000
15–49trs	61.8 [59.2–64.3]	3 600 000	80.5 [76.7–83.8]	4 200 000

Viral load suppression by sex and age, 2017 & 2022



95-95-95 targets for people aged 15+ years living with HIV by sex, South Africa, 2022

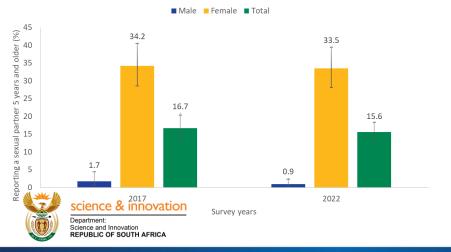
Care along the cascade presents opportunities for TB screening, testing, prevention, detection and treatment



Diagnosed with HIV On ART Virally suppressed

Estimated HIV incidence by age and sex, 2017 & 2022

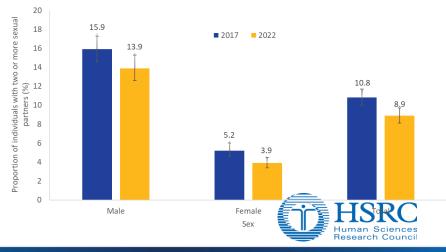
Age groups (years)	Sex	2017		2022	
		Estimated number of new infections per year	95% CI	Estimated number of new infections	95% CI
2 and older	Total	259 700	161 600–386 700	229 400	117 600–347 000
	Male	112 600	47 900–183 000	93 700	35 200–152 300
	Female	147 100	84 400–215 100	135 700	44 300–236 000
15–24	Total Males Females	104 100 31 700 72 400	44 300–172 100 3 700–70 800 34 700–116 100	36 300 17 600 18 700	9 600–66 200 1700–42 300 4 300–36 400
15–49	Total	225 800	129 000–331 300	202 400	96 400-318 000
	Males	99 900	39 000–165 500	78 700	25 700–139 800
	Females	125 900	67 100–190 200	123 600	35 800–221 200
15 and older	Total	241 100	140 000–350 000	225 600	112 800–256 000
	Males	101 700	41 100–166 200	90 300	33 600–151 200
	Females	139 400	76 400–208 200	135 400	43 600–238 600



Behavioural drivers of HIV

45 40.9 2017 2022 38.5 40 35.7 33.7 31.8 29.9 15 Condom 10 5 0 Male Female Total Sex

Condom use among those 15+yrs



Multiple sexual partners among those 15+yrs

Conclusions

- There is stabilization of HIV prevalence in SA , increased ART coverage and viral load suppression (VLS)
- Women still disproportionately affected by HIV- higher prevalence
- Only three provinces had HIV prevalence <10%
- Higher prevalence in people living on farm areas, but high ART coverage
- Fewer men in care
- High risk behaviours that drive HIV persist
- Continued efforts are required to reach the objective of ending HIV as a public health threat by 2030

Closing the gaps in the HIV care cascade

Prevention

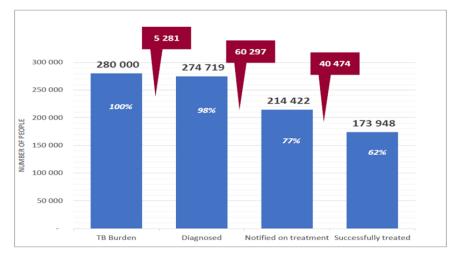
- Address high risk behaviours especially among young people
- Increase awareness and access to PreP

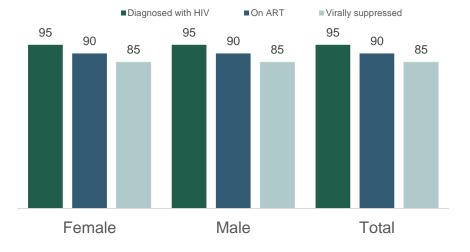
Reach more men

• Intensify efforts to bring men into care and to retain them in care

Increase and improve access to care

- Intensify testing and linkage to care
- Support retention on ART- such as heightened focus on campaigns such as U=U
- Integrate services (TB and HIV, and other conditions)
- HIV care offers many opportunities for contact with people use these contact points to address healthcare needs holistically


Closing the gaps


Overlap of the TB and HIV epidemics offers opportunities to optimize interventions

Closing the gaps

Care along the TB and HIV cascade presents opportunities for screening, testing, prevention, detection and treatment

List of contributors to SABSSMVI

Human Sciences Research Council		U.S. Centers for Disease Control and Prevention (CDC)		
Name	Role	Name	Role	
Prof Khangelani Zuma	Overall Principal Investigator	Dr Rachael Joseph	Co-Investigator	
Prof Leickness Simbayi	Principal Investigator	Dr Pelagia Murangandi	Co-investigator	
Dr Nompumelelo Zungu	Principal Investigator	Ms Nuha Naqvi	Co-investigator	
Prof Sizulu Moyo	Principal Investigator	South African Medi	cal Research Council (SAMRC)	
Dr Edmore Marinda	Co-Principal Investigator	Name	Role	
Dr Sean Jooste	Co-Principal Investigator	Dr Tarylee Reddy	Statistician	
Dr Shandir Ramlagan	Project Director	Dr Nonhlanhla Yende-Zuma	Statistician	
Dr Musawenkosi Mabaso	Project Director	Ms Mikateko Mazinu	Statistician	
Dr Lehlogonolo Makola	Overall Project Manager	Ms Yusentha Balakrishna	Statistician	
Mr Johan Van Zyl	Project Manager: Quality Control	National Institute for Communicable Diseases (NICD)		
Dr Vuyelwa Mehlomakulu	Project Manager: HIV Testing Services	Name	Role	
Dr Rindidzani Magobo	Project Manager: Laboratory Testing	Prof. Adrian Puren	Co-Investigator	
Ms Yolande Shean	Communications Manager	Ms. Beverly Singh	Co-Investigator	
Mr Phaleng Maribe	Data Manager	Ms Ewalde Cutler	Co-Investigator	
Ms Goitseone Maseko	Statistician	Ms Zinhle Brukwe	Co-Investigator	
Ms Ronel Sewpaul	Statistician	University of Cape Town		
Dr Inbarani Naidoo	Co-Investigator	Prof Lubbe Wiesner	Co-Investigator	
Dr Jeremiah Chikovore	Co-Investigator	Ms Sandra Castel	Co-Investigator	
Mr Adlai Davids	Co-Investigator			
Ms Mafanato Maluleke	Co-Investigator/Coordinator			
Mr Lesiba Ofentse Molopa	Co-Investigator/Coordinator	wershy of Cope to		

SABSSMV consortium, partners and funding source

- U.S. Centers for Disease Control and Prevention (CDC)
- South African Medical Research Council (SAMRC)
- National Institute for Communicable Diseases (NICD)
- University of Cape Town (UCT)
- National Department of Health (NDoH)
- South African National AIDS Council (SANAC)
- United Nations Children's Fund (UNICEF)
- United States Agency for International Development (USAID)
- Joint United Nations Programme on HIV/AIDS (UNAIDS)

FUNDING SOURCE

• President's Emergency Plan for AIDS Relief (PEPFAR) through the Centers for Disease Control and Prevention (CDC).

