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Introduction

• Interval-censored data arise where the exact event time is not observed

directly.

• For example, HIV seroconversion time.

• HIV diagnosis is delayed compared to HIV transmission.

• Infection can happen before the first exam time or might not have happened

at last examination (left, right censoring/truncation).

• In such data, we only know the time interval within which infection occurred

but not the event time
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Interval Censored Data

• Methods of analysing interval-censored data stem from the Cox proportional

hazards model (Cox, 1972).

• Finkelstein (1986) generalised the Cox proportional hazards model.

• Interval-censored data already complicated.

• Dependency presents even more challenges.

• Arise from sampling method used (multistage sampling design).

• In cluster sampling, individuals belonging to the same cluster share the

same unobserved cluster-specific effect (frailty) and thus making them

positively correlated.
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Notation

• Let yij (i = 1, · · · , I; j = 1, · · · , Ji) denote the event time for the jth

individual in cluster i.

• Interval-censoring means the exact event time tij is unobserved.

• Only clinical examination endpoints vij = {vij,1; vij,2} encompassing

interval-censored event time tij are observed.

• This means yij = tij if event occurred and yij = vij,1 if the observation is

right-censored.

• Let censoring indicator δij = 1 if event occurred and 0 otherwise.

• The ith cluster specific frailty is denoted by wi.
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Model Formulation

• Multiplicative frailty model with Weibull baseline hazards is assumed,

λ0(yij) = γαyα−1
ij .

• Conditional on wi, survival times are mutually independent with conditional

hazards distribution given by

h(yij |xij , wi) = αγwiy
α−1
ij θij

where θij = exp(x′ijβ).

• Those who experienced an event contribute to the likelihood the product of

their conditional hazards and conditional survival function whilst those who

were right-censored contribute only the conditional survival function.
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Complete-data Likelihood

• Using conditional independence between yi given wi the complete-data

likelihood contribution of cluster i is

Li(wi, vi, ti|ψ)

= f(wi|η)

Ji
∏

j=1

[S(tij |xij , wi)h(tij |xij , wi)]
δij [S(vij,1|xij , wi)]

1−δij

where f(wi|η) is a gamma density specified by the shape parameter η and

scale parameter η−1 and ψ = {η, α, γ, β}.
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Full Bayesian Inference

• Specify priors for hyperparameter η, baseline hazard parameters α and γ,

and fixed effects β. Prior for β is assumed MVN(d0 = 0, Σ0 = υ0I),

where υ0 is a suitably chosen large number.

• A Gamma (ρ1, ρ2) prior for η where ρ1 and ρ2 are suitably chosen

constants is specified. A priori, it is also common to specify Gamma

(a1, a2) prior and Gamma (b1, b2) prior for α and γ, respectively.

• The joint distribution, f(data, β, α, γ, tij , wi, η), of all parameters,

hyperparameters and the data for our model is given by

f(β)f(α)f(γ)f(η) ×







I
∏

i=1

f(wi|η)

Ji
∏

j=1

L(yij |β, α, γ, wi)







.
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Full Bayesian Inference

• Requires joint posterior distribution of all parameters given the observed

data.

• Difficult or impractical to obtain analytically.

• To avoid evaluating high dimensional integrals we use MCMC methods,

specifically Gibbs sampler to generate samples from the posterior.

• The algorithm finds Markov chain that has the joint posterior as its long-run

distribution.
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Gibbs Conditional Distributions

• Cluster specific random effect: f(wi|data, β, α, γ, tij , η)

∝ w

∑

Ji

j=1
δij+η−1

i e
−wi[η+

∑

Ji

j=1
δijΛ(tij |xij)+

∑

Ji

j=1
(1−δij)Λ(vij,1|xij)]

kernel of gamma with shape
∑Ji

j=1 δij + η and inverse scale parameters

η +
∑Ji

j=1 δijΛ(tij |xij) +
∑Ji

j=1(1 − δij)Λ(vij,1|xij).

• Random effect inverse variance: f(η|data, β, α, γ, wi)

∝ ηρ1−1 ×

(

ηη

Γ(η)

)I
(

I
∏

i=1

wi

)η−1

e
−η
[

ρ2+
∑

I

i=1
wi

]

.

This is a simple log-concave distribution in η and can be sampled efficiently

using the adaptive-rejection sampling scheme
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Baseline Scale and Shape Parameters

• The scale parameter of the baseline hazard: f(γ|data, β, α, η, tij , wi)

∝ γ

∑

I

i=1

∑

Ji

j=1
δij+b1−1

e
−γ[b2+

∑

I

i=1

∑

Ji

j=1
δijφ(tij)+

∑

I

i=1

∑

Ji

j=1
(1−δij)φ(vij,1)]

where φ(tij) = wit
α
ijθij and φ(vij,1) = wiv

α
ij,1θij . This conditional is

also recognized as the kernel of a gamma distribution.

• The shape parameter of the baseline hazard: f(α|data, β, γ, η, tij , wi)

∝ α

∑

I

i=1

∑

Ji

j=1
δij+a1−1

× e
−[αa2+

∑

I

i=1

∑

Ji

j=1
δijH(tij |xij ,wi)]

× +e
[
∑

I

i=1

∑

Ji

j=1
(1−δij)H(vij,1|xij ,wi)] × (

I
∏

i=1

Ji
∏

j=1

t
δij

ij )α−1

which does not simplify to any standard distribution.
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Gibbs Conditional for Interval Censored Event Time

• The unobserved interval-censored event time:

f(tij |vij,1 < tij ≤ vij,2,data, β, α, γ, η, wi)

=
f(tij |data, β, α, γ, η, wi)

∫ vij,2

vij,1
f(tij |data, β, α, γ, η, wi)dtij

=
exp(−wiγt

α
ijθij) × wiαγt

α−1
ij θij

S(vij,1|xij , wi) − S(vij,2|xij , wi)

∝ exp(−wiγt
α
ijθij) × wiαγt

α−1
ij θij

which we recognize as the kernel of a Weibull distribution with shape

parameter α and scale parameter γwiθij . The node can also be sampled

directly on condition that the sampled value tij ∈ (vij,1, vij,2].
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Fixed Effects Gibbs Conditional

• f(β|,data, α, γ, η, tij , wi), does not simplify.

• If the improper prior f(β) ∝ 1 is assumed, the posterior mode will be

proportional to the maximum likelihood (ML) estimate for β.

• A modified EM algorithm can be used to compute the ML estimates (Klein,

1992) with event times and frailties fixed and known.

• The normal approximation, with mean and covariance matrix equal to the

mode and inverse of the Fisher information matrix obtained from the ML

estimation, can be used as the conditional density.

• The β’s are then generated by inserting a Metropolis step using the normal

approximation as the candidate generating density.
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Model Implementation

• The model was implemented on the data from migrant men and their female

sexual partners, and non-migrant men and their female sexual partners

(Lurie, et al 2003a; 2003b).

• Acceptance rate for candidate β’s was about 54%, which was well within

30% and 70%, the recommended acceptance rate (Raftery and Lewis,

1996).

• Fixed effects sampling scheme involves an EM estimation of ML estimates

and calculation of Fisher information for the proposal density in the

Metropolis step.

• This can be computationally intensive.
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Recommendation

• It is recommended to modify the iteration scheme to iterate through

wi, tij , α, γ and η several times for each draw of β.

• The modification improves the efficiency.

• Equal sampling of these nodes leads to successive simulated values of

wi, tij , η, γ and α that are highly autocorrelated while those for β are

nearly nearly independent.
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Conclusion

• Advents of MCMC make possible the use of flexible Bayesian models to

analyse correlated interval-censored data.

• Simplify to two iterative steps involving imputation step which draws w
(r)
i

and t
(r)
ij from their respective conditional predictive distributions

f(wi|data, ψ, t
(r−1)
ij ) and f(tij |vij,1 < tij ≤ vij,2,data, ψ, w

(r)
i ), and a

• posterior step which draws ψ(r) from conditional posterior distribution

f(ψ|data, w
(r)
i , t

(r)
ij ).

• The two iterative steps can be viewed as the stochastic counterparts to the

E-step and M-step of the EM algorithm.
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