Measuring national HIV incidence

Metropolitan, December 7, 2007

Prof. Thomas M. Rehle, MD, PhD Human Sciences Research Council (HSRC) School of Public Health and Family Medicine, UCT

Prevalence = incidence X average duration

Basic reproductive rate R_o

 $\mathbf{R}_0 = \beta c D$ β = Average probability of HIV transmission per exposure to an infectious partner c = Number of exposures of susceptible persons to infectious partners per unit time **D** = **Duration of infectious period**

Rehle / Epidemiology

Basic Reproductive Rate

Rehle / Epidemiology

Basic Reproductive Rate

Relationship between incidence, prevalence, and mortality

Source: FHI Evaluation Handbook 2001

Critical Questions

Are the observed changes in the prevalence of HIV:

- 1. a reflection of the natural history of the epidemic?
- 2. a product of changes in behavior?
- 3. a product of interventions?

Factors Contributing to Observed Changes in HIV Prevalence

- Mortality, especially in mature epidemics
- Saturation effects in populations at high infection risk
- Decrease in new HIV infections as a result of behavior change:
 - Effect of interventions
 - Spontaneous (e.g. close friend with HIV/AIDS)
- Decrease in the prevalence of biological cofactors e.g. STIs
- Decrease in deaths in HIV infected persons as a result of antiretroviral therapy (ART)
- Population differentials related to in- and out migration patterns
- Sampling bias and/or errors in data collection

Estimating HIV incidence

- Epidemiological methods
 - Cohort studies (directly observed incidence)
 - HIV prevalence in youngest age group (15-20)
 (as a proxy for recent infection)
 - Mathematical modeling (*indirect incidence estimate*)

 Laboratory- based methods (direct incidence measure from cross-sectional surveys)

HIV-1 BED incidence EIA (adapted from B. Parekh et al. 2002)

Schematic of the BED-CEIA

ITERS FOR

Comparison of Conventional EIA (antigen coated plates) and BED-Capture EIA

BED window periods at 0.8 cutoff

Subtypes

OVERALL

Country Window (95% CI)

AD B C C E

Kenya Amsterdam Thailand **Zimbabwe** Ethiopia Thailand 171 (150-199) 127 (113-152) 143 (118-170) **181 (165-198)** 167 (154-180) 115 (106-125)

155 (146-165)

Calibration of window period

Zimbabwe Cohort / subtype C

Window Period Estimates: Incidence

BED incidence adjustments

• UNAIDS 2005: BED overestimates HIV incidence in cross-sectional studies

- BED validation meeting, CDC 2006:
 - Sensitivity/Specificity Adjustment (McDougal et al.)
 - Specificity Adjustment (Hargrove et al.)
 - Validated for HIV-1 subtypes B and C
 - (2 532 specimens from 1 192 individuals)

BED HIV incidence calculation

 $I = \frac{F (365/w) N_{inc}}{N_{neg} + F (365/w) N_{inc}/2} X 100$

(McDougal) $(R/P) + \gamma - 1$ $(R/P) (\alpha - \beta + 2\gamma - 1)$

Window period = 180 days

Incidence = number of new infections per year per 100 persons at risk (% / year)

National HIV Household Survey South Africa 2005

- Study population: 2 years and older
- Anonymous HIV testing of dried blood spot specimens
- HIV prevalence and HIV incidence
- Final sample: 23 275 interviewed, 15 851 tested for HIV

HIV incidence % and number of new infections by age group, South Africa 2005

Age group (years)	Weighted sample (n)	HIV incidence % per year [95%CI]	Estimated number of new infections per year (n)
≥ 2	44 513 000	1.4 [1.0 - 1.8]	571 000
2-14	13 253 000	0.5 [0.0 - 1.2]	69 000
15-24	9 616 000	2.2 [1.3 - 3.1]	192 000
15-49	24 572 000	2.4 [1.7 – 3.2]	500 000

HIV prevalence and HIV incidence by age and sex, South Africa 2005

Are the adjusted BED HIV incidence estimates plausible?

ASSA model

BED HIV incidence vs ASSA model (estimates for 2005)

BED HIV incidence vs ASSA model: male and female youth 15-24 years

HIV prevalence in youth by single year of age HSRC 2005

HIV incidence and behaviour HSRC 2005 (age group 15 – 49 years)

Variable	HIV incidence (% per year)
Marital status	
Single	3.0
Married	1.3
Widowed	5.8
Sexual history	
Sexually active in the past 12 months	2.4
Current pregnancy	5.2
Condom use at last sex (15-24 yrs)	
Yes	2.9
Νο	6.1

Conclusion

- Incidence estimates enable a more timely analysis of the current HIV-transmission dynamics
- The adjusted BED HIV incidence estimates provide valid national HIV incidence estimates for South Africa
- Prevention campaigns did not have the desired impact, particularly among young women

Laboratory-based adjustment: Sequential testing algorithm

