Abstract:
Mathematical models that incorporate HIV disease progression dynamics can estimate the potential impact of strategies that delay HIV disease progression and reduce infectiousness for persons not on antiretroviral therapy (ART). Suppressive treatment of HIV-positive persons co-infected with herpes simplex virus-2 (HSV-2) with valacyclovir, an HSV-2 antiviral, can lower HIV viral load, but the impact of partially-suppressive valacyclovir relative to fully-suppressive ART on population HIV transmission has not been estimated.Even when compared with valacyclovir suppression, a drug that reduces HIV viral load, universal treatment for HIV is the optimal strategy for averting new infections and increasing public health benefit. Universal HIV treatment would most effectively and efficiently reduce the HIV burden.
Reference:
If you would like to obtain a copy of this Research Output, please contact the Research Outputs curators at researchoutputs@hsrc.ac.za
Attribution-NonCommercial
CC BY-NC
This license lets others remix, adapt, and build upon your work non-commercially, and although their new works must also acknowledge you and be non-commercial, they don’t have to license their derivative works on the same terms.