COVID-19 screening in low resource settings using artificial intelligence for chest radiographs and point-of-care blood tests

Show simple item record

dc.date.accessioned 2024-11-21T11:04:49Z
dc.date.available 2024-11-21T11:04:49Z
dc.date.issued 2023-12-07 en
dc.identifier.issn 2045-2322 en
dc.identifier.uri http://hdl.handle.net/20.500.11910/22750
dc.description.abstract Artificial intelligence (AI) systems for detection of COVID-19 using chest X-Ray (CXR) imaging and point-of-care blood tests were applied to data from four low resource African settings. The performance of these systems to detect COVID-19 using various input data was analysed and compared with antigen-based rapid diagnostic tests. Participants were tested using the gold standard of RT-PCR test (nasopharyngeal swab) to determine whether they were infected with SARS-CoV-2. A total of 3737 (260 RT-PCR positive) participants were included. In our cohort, AI for CXR images was a poor predictor of COVID-19 (AUC = 0.60), since the majority of positive cases had mild symptoms and no visible pneumonia in the lungs. AI systems using differential white blood cell counts (WBC), or a combination of WBC and C-Reactive Protein (CRP) both achieved an AUC of 0.74 with a suggested optimal cut-off point at 83% sensitivity and 63% specificity. The antigen-RDT tests in this trial obtained 65% sensitivity at 98% specificity. This study is the first to validate AI tools for COVID-19 detection in an African setting. It demonstrates that screening for COVID-19 using AI with point-of-care blood tests is feasible and can operate at a higher sensitivity level than antigen testing. en
dc.format.medium Print en
dc.subject SEVERE ACUTE RESPIRATORY SYNDROME CORONAVIRUS-2 en
dc.subject RESPIRATORY SYSTEM en
dc.subject COVID-19 en
dc.subject CLINICAL TESTS AND MEASUREMENTS en
dc.title COVID-19 screening in low resource settings using artificial intelligence for chest radiographs and point-of-care blood tests en
dc.type Journal Article en
dc.description.version Y en
dc.ProjectNumber N/A1 en
dc.Volume 13(1) en
dc.BudgetYear 2023/24 en
dc.ResearchGroup Public Health, Societies and Belonging en
dc.SourceTitle Scientific Reports en
dc.ArchiveNumber 9814136 en
dc.PageNumber Online en
dc.outputnumber 14793 en
dc.bibliographictitle Murphy, K., Muhairwe, J., Schalekamp, S., van Ginneken, B., Ayakaka, I., Mashaete, K., Katende, B., Van Heerden, A., Bosman, S., Madonsela , T., Fernandez, L.G., Signorell, A., Bresser, M., Reither, K. & Glass, T.R. (2023) COVID-19 screening in low resource settings using artificial intelligence for chest radiographs and point-of-care blood tests. Scientific Reports. 13(1):Online. http://hdl.handle.net/20.500.11910/22750 http://hdl.handle.net/20.500.11910/22750 en
dc.publicationyear 2023 en
dc.contributor.author1 Murphy, K. en
dc.contributor.author2 Muhairwe, J. en
dc.contributor.author3 Schalekamp, S. en
dc.contributor.author4 van Ginneken, B. en
dc.contributor.author5 Ayakaka, I. en
dc.contributor.author6 Mashaete, K. en
dc.contributor.author7 Katende, B. en
dc.contributor.author8 Van Heerden, A. en
dc.contributor.author9 Bosman, S. en
dc.contributor.author10 Madonsela , T. en
dc.contributor.author11 Fernandez, L.G. en
dc.contributor.author12 Signorell, A. en
dc.contributor.author13 Bresser, M. en
dc.contributor.author14 Reither, K. en
dc.contributor.author15 Glass, T.R. en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record