dc.date.accessioned | 2024-11-21T11:04:49Z | |
dc.date.available | 2024-11-21T11:04:49Z | |
dc.date.issued | 2023-12-07 | en |
dc.identifier.issn | 2045-2322 | en |
dc.identifier.uri | http://hdl.handle.net/20.500.11910/22750 | |
dc.description.abstract | Artificial intelligence (AI) systems for detection of COVID-19 using chest X-Ray (CXR) imaging and point-of-care blood tests were applied to data from four low resource African settings. The performance of these systems to detect COVID-19 using various input data was analysed and compared with antigen-based rapid diagnostic tests. Participants were tested using the gold standard of RT-PCR test (nasopharyngeal swab) to determine whether they were infected with SARS-CoV-2. A total of 3737 (260 RT-PCR positive) participants were included. In our cohort, AI for CXR images was a poor predictor of COVID-19 (AUC = 0.60), since the majority of positive cases had mild symptoms and no visible pneumonia in the lungs. AI systems using differential white blood cell counts (WBC), or a combination of WBC and C-Reactive Protein (CRP) both achieved an AUC of 0.74 with a suggested optimal cut-off point at 83% sensitivity and 63% specificity. The antigen-RDT tests in this trial obtained 65% sensitivity at 98% specificity. This study is the first to validate AI tools for COVID-19 detection in an African setting. It demonstrates that screening for COVID-19 using AI with point-of-care blood tests is feasible and can operate at a higher sensitivity level than antigen testing. | en |
dc.format.medium | en | |
dc.subject | SEVERE ACUTE RESPIRATORY SYNDROME CORONAVIRUS-2 | en |
dc.subject | RESPIRATORY SYSTEM | en |
dc.subject | COVID-19 | en |
dc.subject | CLINICAL TESTS AND MEASUREMENTS | en |
dc.title | COVID-19 screening in low resource settings using artificial intelligence for chest radiographs and point-of-care blood tests | en |
dc.type | Journal Article | en |
dc.description.version | Y | en |
dc.ProjectNumber | N/A1 | en |
dc.Volume | 13(1) | en |
dc.BudgetYear | 2023/24 | en |
dc.ResearchGroup | Public Health, Societies and Belonging | en |
dc.SourceTitle | Scientific Reports | en |
dc.ArchiveNumber | 9814136 | en |
dc.PageNumber | Online | en |
dc.outputnumber | 14793 | en |
dc.bibliographictitle | Murphy, K., Muhairwe, J., Schalekamp, S., van Ginneken, B., Ayakaka, I., Mashaete, K., Katende, B., Van Heerden, A., Bosman, S., Madonsela , T., Fernandez, L.G., Signorell, A., Bresser, M., Reither, K. & Glass, T.R. (2023) COVID-19 screening in low resource settings using artificial intelligence for chest radiographs and point-of-care blood tests. Scientific Reports. 13(1):Online. http://hdl.handle.net/20.500.11910/22750 http://hdl.handle.net/20.500.11910/22750 | en |
dc.publicationyear | 2023 | en |
dc.contributor.author1 | Murphy, K. | en |
dc.contributor.author2 | Muhairwe, J. | en |
dc.contributor.author3 | Schalekamp, S. | en |
dc.contributor.author4 | van Ginneken, B. | en |
dc.contributor.author5 | Ayakaka, I. | en |
dc.contributor.author6 | Mashaete, K. | en |
dc.contributor.author7 | Katende, B. | en |
dc.contributor.author8 | Van Heerden, A. | en |
dc.contributor.author9 | Bosman, S. | en |
dc.contributor.author10 | Madonsela , T. | en |
dc.contributor.author11 | Fernandez, L.G. | en |
dc.contributor.author12 | Signorell, A. | en |
dc.contributor.author13 | Bresser, M. | en |
dc.contributor.author14 | Reither, K. | en |
dc.contributor.author15 | Glass, T.R. | en |
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |