Computer-aided detection of tuberculosis from chest radiographs in a tuberculosis prevalence survey in South Africa: external validation and modelled impacts of commercially available artificial intelligence software

Show simple item record

dc.date.accessioned 2024-11-21T08:14:36Z
dc.date.available 2024-11-21T08:14:36Z
dc.date.issued 2024-08-30 en
dc.identifier.uri http://hdl.handle.net/20.500.11910/23682
dc.description.abstract Computer-aided detection (CAD) can help identify people with active tuberculosis left undetected. However, few studies have compared the performance of commercially available CAD products for screening in high tuberculosis and high HIV settings, and there is poor understanding of threshold selection across products in different populations. We aimed to compare CAD products' performance, with further analyses on subgroup performance and threshold selection. We evaluated 12 CAD products on a case's control sample of participants from a South African tuberculosis prevalence survey. Only those with microbiological test results were eligible. The primary outcome was comparing products' accuracy using the area under the receiver operating characteristic curve (AUC) against microbiological evidence. Threshold analyses were performed based on pre-defined criteria and across all thresholds. We conducted subgroup analyses including age, gender, HIV status, previous tuberculosis history, symptoms presence, and current smoking status. en
dc.format.medium Print en
dc.subject HIV INFECTIONS en
dc.subject TUBERCULOSIS en
dc.subject DIGITAL HEALTH CARE en
dc.subject ARTIFICIAL INTELLIGENCE (AI) en
dc.title Computer-aided detection of tuberculosis from chest radiographs in a tuberculosis prevalence survey in South Africa: external validation and modelled impacts of commercially available artificial intelligence software en
dc.type Journal Article en
dc.description.version Y en
dc.ProjectNumber N/A en
dc.Volume 6(9) en
dc.BudgetYear 2024/25 en
dc.ResearchGroup Public Health, Societies and Belonging en
dc.SourceTitle The Lancet Digital Health en
dc.ArchiveNumber 9814565 en
dc.PageNumber e605 - e613 en
dc.outputnumber 15222 en
dc.bibliographictitle Qin, Z.Z., Van der Walt, M., Moyo, S., Ismail, F., Maribe, P., Denkinger, C.M., Zaidi, S., Barrett, R., Mvusi, L., Mkhondo, N., Zuma, K., Manda, S., Koeppel, L., Mthiyane, T. & Creswell, J. (2024) Computer-aided detection of tuberculosis from chest radiographs in a tuberculosis prevalence survey in South Africa: external validation and modelled impacts of commercially available artificial intelligence software. The Lancet Digital Health. 6(9):e605 - e613. http://hdl.handle.net/20.500.11910/23682 en
dc.publicationyear 2024 en
dc.contributor.author1 Qin, Z.Z. en
dc.contributor.author2 Van der Walt, M. en
dc.contributor.author3 Moyo, S. en
dc.contributor.author4 Ismail, F. en
dc.contributor.author5 Maribe, P. en
dc.contributor.author6 Denkinger, C.M. en
dc.contributor.author7 Zaidi, S. en
dc.contributor.author8 Barrett, R. en
dc.contributor.author9 Mvusi, L. en
dc.contributor.author10 Mkhondo, N. en
dc.contributor.author11 Zuma, K. en
dc.contributor.author12 Manda, S. en
dc.contributor.author13 Koeppel, L. en
dc.contributor.author14 Mthiyane, T. en
dc.contributor.author15 Creswell, J. en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record