dc.date.accessioned |
2007-03-22 |
en |
dc.date.accessioned |
2023-09-13T19:05:19Z |
|
dc.date.available |
2023-09-13T19:05:19Z |
|
dc.date.issued |
2015-08-25 |
en |
dc.identifier.uri |
http://hdl.handle.net/20.500.11910/6163
|
|
dc.description.abstract |
In epidemiological studies where subjects are seen periodically on follow-up visits, interval-censored data occur naturally. The exact time the change of state (such as HIV seroconversion) occurs is not known exactly, only that it occurred within some time interval. In multi-stage sampling or partner tracing studies, individuals are grouped into smaller subgroups. Individuals within a subgroup share an unobservable specific frailty which induces correlation within the subgroup. In this paper, we consider a Bayesian model for analysing correlated interval-censored data. Parameters are estimated using the Markov chain Monte Carlo methods, specifically the Gibbs sampler. |
en |
dc.format.medium |
Print |
en |
dc.subject |
STATISTICS |
en |
dc.subject |
EPIDEMIOLOGY |
en |
dc.title |
A Bayesian analysis of correlated interval-censored data |
en |
dc.type |
Journal Article |
en |
dc.description.version |
Y |
en |
dc.ProjectNumber |
N/A |
en |
dc.Volume |
36(4) |
en |
dc.BudgetYear |
2006/07 |
en |
dc.ResearchGroup |
Social Aspects of HIV/AIDS and Health |
en |
dc.SourceTitle |
Communications in Statistics - Theory and Methods |
en |
dc.ArchiveNumber |
4498 |
en |
dc.PageNumber |
725-730 |
en |
dc.outputnumber |
3043 |
en |
dc.bibliographictitle |
Zuma, K. (2007) A Bayesian analysis of correlated interval-censored data. Communications in Statistics - Theory and Methods. 36(4):725-730. http://hdl.handle.net/20.500.11910/6163 http://hdl.handle.net/20.500.11910/6163 |
en |
dc.publicationyear |
2007 |
en |
dc.contributor.author1 |
Zuma, K. |
en |