A Bayesian analysis of correlated interval-censored data

Show simple item record

dc.date.accessioned 2007-03-22 en
dc.date.accessioned 2023-09-13T19:05:19Z
dc.date.available 2023-09-13T19:05:19Z
dc.date.issued 2015-08-25 en
dc.identifier.uri http://hdl.handle.net/20.500.11910/6163
dc.description.abstract In epidemiological studies where subjects are seen periodically on follow-up visits, interval-censored data occur naturally. The exact time the change of state (such as HIV seroconversion) occurs is not known exactly, only that it occurred within some time interval. In multi-stage sampling or partner tracing studies, individuals are grouped into smaller subgroups. Individuals within a subgroup share an unobservable specific frailty which induces correlation within the subgroup. In this paper, we consider a Bayesian model for analysing correlated interval-censored data. Parameters are estimated using the Markov chain Monte Carlo methods, specifically the Gibbs sampler. en
dc.format.medium Print en
dc.subject STATISTICS en
dc.subject EPIDEMIOLOGY en
dc.title A Bayesian analysis of correlated interval-censored data en
dc.type Journal Article en
dc.description.version Y en
dc.ProjectNumber N/A en
dc.Volume 36(4) en
dc.BudgetYear 2006/07 en
dc.ResearchGroup Social Aspects of HIV/AIDS and Health en
dc.SourceTitle Communications in Statistics - Theory and Methods en
dc.ArchiveNumber 4498 en
dc.PageNumber 725-730 en
dc.outputnumber 3043 en
dc.bibliographictitle Zuma, K. (2007) A Bayesian analysis of correlated interval-censored data. Communications in Statistics - Theory and Methods. 36(4):725-730. http://hdl.handle.net/20.500.11910/6163 http://hdl.handle.net/20.500.11910/6163 en
dc.publicationyear 2007 en
dc.contributor.author1 Zuma, K. en


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record